
ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 1

Mastering Timing Challenges for the Design of Multi-Mode Applications on

Multi-Core Real-Time Embedded Systems

Mircea Negrean and Rolf Ernst

Institute of Computer and Network Engineering

Technische Universität Braunschweig

D-38106, Braunschweig, Germany

{negrean,ernst}@ida.ing.tu-bs.de

Simon Schliecker

Symtavision GmbH

Frankfurter Str. 3 C

D-38122, Braunschweig, Germany

schliecker@symtavision.com

Abstract Driven by the increasing demand for

computational power and by the rising applications’

complexity in various embedded application domains,

multi-core solutions emerge as the predominant platform

for embedded real-time applications. In this context,

designers have to face new challenges generated by the

need to accommodate applications with complex timing

behaviour, e.g. multi-mode applications that can switch

between different operational modes at runtime.

Consequently the availability of appropriate timing

analysis methods for the prediction of the timing

behaviour is essential for the design of multi-core real-

time systems.

Relying on current automotive practice and on related

work of the real-time research community we explain

and exemplify how tool supported formal analysis

methods can be applied to current and upcoming

industrial design. We present recent progress in the field

of scheduling analysis methods and discuss challenges

and new options in the design of multi-mode

applications on multi-core real-time systems.

Keywords Schedulability analysis, timing analysis,

multi-mode applications, multi-core, real-time

1. Introduction

Multi-core architectures

Driven by power constraints, cost-efficiency and

performance requirements, embedded system designs

adopt the trend towards multi-core architectures (e.g.

[1]). The new multi-core processors are aimed to host the

significant increase in the computational workload of

next generations embedded applications on as few

processors as possible. By using powerful multi-core

processors, it will be possible to integrate multiple

functionalities into a single chip or to parallelize

complex computations over multiple cores, e.g. in

relatively high-performance domains such as engine

control or advanced driver assistance systems.

Some of these complex functions consist of tasks that

exhibit a dynamic behaviour at runtime, e.g. engine

speed synchronous tasks in the automotive power train

controllers. Engine-synchronous tasks are periodic tasks

whose recurrence depends on the camshaft and

crankshaft positions that vary with the engine speed. The

variable recurrence of these tasks at runtime leads to a

continuous change in the configurations that have to be

taken into account for the OS schedule on the processors

and leads to a multi-mode behaviour of the entire

system.

The multi-mode behaviour of such systems is,

however, much more complex. The load associated with

the engine-synchronous tasks increases with the engine

speed due to the higher rate of activations. If no

measures are in place, the load on the controllers may

eventually increase above a critical value making the

system unschedulable and the engine control inefficient

or even unstable. Furthermore, when multi-mode

applications, potentially consisting of communicating

tasks, have to be accommodated on multi-core platforms

the timing behaviour of the entire system is challenged

and requires increased attention.

Analysis methods and tools

Consequently, appropriate methods for the prediction

of the timing behaviour are required for the design of

reliable multi-core real-time systems. Scheduling and

performance analysis techniques aim to help designers in

detecting infeasible system configurations in the early

design phases and therewith to prevent costly design

mistakes. Currently, sophisticated tools (e.g. aiT [2],

SymTA/S [3]) for timing analysis at the code-level,

controller-level and networked system-level are

becoming state-of-the-art for efficient timing

verification. However, in the perspective of advanced

multi-core environments the methodologies have to be

extended to face the arising challenges.

Contribution

In this paper, we address this problem and show how

tool supported analysis methods can be applied to the

current and upcoming industrial design. We highlight the

implications of accommodating multi-mode applications

on multi-core systems and identify the need for enhanced

solutions for timing and performance design. The

analysis approaches proposed so far do not suit real-time

systems which accommodate tasks with angular

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 2

recurrence, as can be found in automotive power train

controllers. We identify similarities between the problem

of scheduling real-time applications which accommodate

tasks with angular recurrence and the problem of

scheduling multi-mode applications. Relying on recent

progress in the field of scheduling analysis for multi-

mode applications, we propose new options for the

design and analysis of complex multi-core real-time

embedded systems.

2. Case study description

In what follows, we introduce an automotive specific

use case in order to explain and exemplify how tool

supported formal analysis methods are used in the

current automotive practice and how these methods can

be also applied to the foreseeable automotive multi-core

setups.

The setup depicted in Figure 1 corresponds to a

partitioned multiprocessor system where the two cores

are independently scheduled according to a fixed-priority

scheduler (e.g. OSEK/VDX [4]). The system consists of

several periodic tasks and some high priority “engine-

synchronous” tasks that measure the current engine state

and control actuators such as fuel injection several times

per engine rotation. All engine synchronous tasks are

mapped to Core2. In this way we consider a simplified

configuration of a current power train application (i.e.

engine control) and envisage a possible implementation

on the future multi-core architectures.

Figure 1 Dual-Core processor with inter-core

communication.

Our assumption is that the only degree of variance in

this system is given by the engine speed, measured in

revolutions per minute (rpm). Thus, depending on the

engine speed the activation of the engine-synchronous

tasks will vary. For example, an engine-synchronous

task that is activated each 360
0
 (i.e. each 1 rotation) at

1000rpm has a recurrence of 60ms and 10ms at

6000rpm.

With increasing engine speed, the load increases due

to the higher rate of activations. Figure 2 illustrates the

load situation for the dual-core system in Figure 1.

Figure 2 Workload to be processed on each core.

Increasing engine speed leads to higher rate of activation

for engine-synchronous tasks. In addition task modes lead

to varied workload. Critical load on Core 2 is reached

around 3500 and 5500 rpm.

2.1. Impact of mode changes on processor load

If no further measures are in place, the load may

eventually increase above a critical value, making the

system unschedulable and the engine control inefficient

or even unstable. Different solutions are therefore

applied in order to reduce the workload at high engine

speeds. For example, some tasks are changing their

behaviour at higher engine speeds, computing only

rough control values (i.e. tasks reduce their execution

times). Furthermore, other tasks are aborted when the

engine speed reaches a critical value. In this way,

automotive power train controllers resort to mode

change mechanisms in order to perform at a high quality

for low engine speeds and to adequately operate also

under high engine speeds.

This behaviour can be reflected in a scheduling model

of the system. Let’s assume that starting e.g. at 3500rpm,

the engine-synchronous tasks change their behaviour and

some internal functions are completely shut-off (e.g.

“high-quality mode” to “medium quality mode”). Later

e.g. at 5500rpm, additional functions are turned off (e.g.

“low quality mode”). In addition, some functions

provided by the periodic tasks are reactive to the current

processor load. This task flexibility ensures that the

schedulability is maintained through the complete

spectrum of operating conditions.

The diagram in Figure 2 shows the task workload that

has to be serviced by each core, ignoring any inter-core

communication effects. For each possible engine speed

the load is computed based on the

 Period and execution time for the periodic tasks,

where the execution time can be a function of the

engine speed and the

 Rate of activation and execution time for the

engine-synchronous tasks, where the rate of

activation is and the execution time can be a

function of the engine speed.

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 3

One can see the effect of changed task behaviour at

engine speeds 3500rpm and 5500rpm, where task

RPM_2 is put into a reduced quality mode. In addition,

also some periodic tasks in this example have increased

execution time requirements at certain engine speeds

(which leads to a slight load variation on Core1 at 2500

and 4500 rpm).

This diagram can be easily produced with a model

based scheduling analysis tool (such as SymTA/S [3]).

Each engine speed can be seen as a different scenario, in

which the corresponding model parameters are set (for

example through scripting or a dedicated user interface).

For large range of engine speeds the granularity of

500rpm will be sufficient, because the behaviour can be

assumed to be largely monotonous with respect to

increasing engine speed. In addition, any engine speed at

which a task behaviour changes should be included in

the experiments.

2.2. Suggested procedure for analysis

Simple case adapted from single-core process

Of course the processor load alone is not a sufficient

metric to show the schedulability of the system, because

it does not allow for checking the adherence to typical

timing constraints such as latency. For example, a

latency constraint may be associated with task RPM_2

which requires the task to recompute a control parameter

for the injection no later than 1ms after it has been

activated.

Also here, performance analysis has to be performed

for all potential run-time scenarios. With the scripting

support in model-based analysis tools such as SymTA/S

[3] this can be easily achieved today. Figure 3 shows the

results of a series of experiments capturing the timing

conditions for different engine speeds. The worst-case

response times have been computed using the busy

window technique provided by the tool mentioned

above. The graph shows that in the given setup:

 The engine synchronous task RPM_2 experiences

a decreased response time at higher engine

speeds. This is due to the skipping of functions at

engine speeds above 3500 and 5500 rpm.

 A lower priority periodic task (called OS2_20ms)

has significant variance in its worst-case response

time: Generally its response time will increase at

higher engine speeds (due to increased number of

interrupts by engine synchronous tasks), but this

effect is compensated by the choice of dropping

functions. In effect it can be seen that task

OS2_20ms has its peak response time at

3500rpm.

This kind of diagram allows the verification of global

timing constraints via the quick identification of critical

scenarios. Such scenarios can then be investigated in

more detail. In addition the diagram highlights scenarios

which are overly safe, i.e. where functions are maybe

dropped without need.

Figure 3 Response times of task RPM_2 and OS2_20ms

at different engine speeds.

Complex case for future multi-core applications

As previously discussed, a simple and fast way to

treat critical situations in the industrial practice (e.g. in

case of increased load at high engine speeds) is to just

abort some of the processed system functions in order to

permit the safe execution of critical functions. However,

even if by implementing severe solutions the safe system

functionality can be ensured (e.g. by aborting tasks or by

reducing their computational requirements), the resulting

service degradation is not convenient and will become

unacceptable with the increasing requirements for lower

emissions and continued demands for improved fuel

economy.

When functions are suddenly aborted, just like in case

of processor interrupts, data are lost. Instead of executing

such sharp transitions, gradual mode transitions are

preferable such that functions can be continued or

resumed later.

In what follows we provide an overview on recent

progress in the field of scheduling analysis for multi-

mode applications. Relying on this, in Section 4 we will

further discuss new options for the design of multi-core

real-time systems, options that could be applied in order

to avoid the service degradation resulting from the

overly pessimistic measures applied in the current

practice.

3. Multi-mode systems

Similar to the automotive control systems, other real-

time systems that can change their functionality over

time and execute in different operational modes can be

found in different application domains, for example in

safety-critical avionic or in multimedia smart devices.

Such systems may have to adapt their behaviour during

runtime to changing conditions in the environment or in

the system itself. To properly handle this behaviour,

operational modes and mode change protocols which

control the transition between the modes have to be

defined.

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 4

3.1. Real-time system model

For the next explanations we abstract the dual-core

system in Figure 1 and further refer to the system

depicted in Figure 4.

Figure 4 Illustration of a dual-core processor with inter-

core communication.

Classic system model in the real-time research

In literature, real-time systems are usually modelled

as a set of tasks T = {T1, T2, …, Tn} which are mapped

and executed on a set of processing (CPUs) and

communication (Busses) resources. Tasks have priorities

allocated and their execution is performed according to a

scheduling policy. As exemplified above, in the current

automotive practice tasks are statically mapped on the

processors and are scheduled according to a fixed-

priority scheduling, i.e. according to the OSEK/VDX

specification [4].

The activation of a task is triggered by an activating

event, which may be the result of timer expiration, an

external or internal interrupt (I1, I4, I5 and I8 in Figure 4

represent the event sources at the task input), or the

result of another task being finished.

In general, tasks are characterized by their execution

times, their activation periods and their deadlines, which

may be smaller, equal, or larger than the periods. These

parameters are expressed in time units.

Extended system model

Engine-synchronous tasks are a special type of

periodic tasks, which have been neglected so far by the

real-time research community. The recurrences of the

engine-synchronous tasks are expressed in engine angle

degree rather than time. For example, let’s assume that

task T2 in Figure 4 is activated each 90
0
 (i.e. four time in

each rotation) and task T3 each 360
0
. In order to obtain a

system-wide unique time base, for each fixed engine

speed at which an engine-synchronous task is to be

specified, the angular recurrence has be transformed in

time units. The activation periods of the engine-

synchronous tasks T2 and T3 at different fixed engine

speed values are given in Table 1.

Table 1 Parameters of the engine-synchronous tasks

In order to capture more exactly the behaviour of

engine-synchronous tasks, the time duration an engine

needs to accelerate or decelerate between two discrete

engine speed values rpm1 and rpm2 can be modelled

with a time interval Δt(rpm1, rpm2) (see Figure 5).

Figure 5 Time intervals between two constant engine-

speed values.

In practice, these time intervals depend on the gear,

on the current cruising speed and the driving behaviour,

and can be obtained e.g. by analysing the acceleration

behaviour of a car using test benches [11] or by relying

on real field tests. The results in [11] indicate for a

particular setup an acceleration phase of 20sec from

1000rpm to 3000rpm in the 4th gear and of 35sec in the

5th gear. Figure 6 depicts a possible scenario during

acceleration.

Figure 6 Example of engine-speed variation over time

during an acceleration phase.

In order to handle the worst-case timing behaviour,

the smallest time intervals, during acceleration and

deceleration, between discrete engine speed values (i.e.

the highest activation rate) have to be assumed.

3.2. Mode change model

The dual-core system in Figure 4 accommodates

several independent periodic tasks, two distributed

applications consisting of communicating tasks and two

engine-synchronous tasks. Task priorities are indicated

by their indices, where the lowest numerical index

indicates the highest priority.

In case such systems may execute in different

operational modes these can be specified by a finite set

M = {M1, M2, …, Mx}. Each mode Mi (Mi ϵ M) is

characterized by a different behaviour and is associated

with a specific set of tasks (a subset of T) together with

its timing properties, e.g. task execution times, priorities

and deadlines.

In response to Mode Change Requests (MCR),

initiated by the environment or by system internal

events, multi-mode systems will experience transitions

from an old operational mode (e.g. M1) characterized by

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 5

a set of functionalities, to a new operational mode (e.g.

M2) characterized by a different or a changed set of

functionalities. For example, assume that at runtime a

mode change request (MCR) triggers a transition from

an operational mode M1 to an operational mode M2

such that task T1 will be removed from Core1 and tasks

T5, T6 and T7 will be added on Core1 and Core2.

In literature, the tasks executing in a multi-mode

system are categorized depending on their behaviour

when a mode change request (MCR) occurs as follows:

(i) old tasks, which are immediately aborted when a

MCR occurs;

(ii) finished or completed tasks, which are present in the

old execution mode, but not in the new one. These

tasks are allowed to finish their execution during

the transition phase which follows the MCR;

(iii) new or added tasks, which are either introduced for

the first time after the MCR or represent a modified

version of old tasks, e.g tasks that change their

parameters - execution time or activating event

model;

(iv) unchanged tasks which are present in both

configurations and remain unchanged in their

parameters during the transitions.

3.3. Mode change protocols

To control the transition between operational modes

designers can opt for synchronous or asynchronous

protocols [12]. The current AUTOSAR specifications

related to the mode-management topic indicate the

support for the same two types of mode change protocols

[5,6,7].

Synchronous and asynchronous protocols differ in the

way they handle new and finished tasks during the

transition phase which follows a MCR.

Synchronous protocols, as opposed to asynchronous

protocols, do not allow new mode tasks to be released

until all finished tasks have completed their last

activation corresponding to the old mode. In this way

synchronous protocols ensure isolation between the

execution of mode specific functionalities. Synchronous

protocols do not require specific schedulability analysis

for the transition phase. However, delaying the start of

the new mode applications is not always suitable as this

could counter the timing of new mode actions which

must be performed as soon as possible (e.g. when

switching to an emergency mode).

Asynchronous protocols overcome the limitation of

synchronous protocols and allow functions of the new

mode to be started simultaneously to the old mode

functions. However, increased attention is required, as

the execution of functions of both modes generates an

increased workload during the transition phase, fact that

can lead to timing violations [9,12,13]. Therefore,

asynchronous protocols require specific schedulability

analysis.

3.4. Challenges and analysis methods

For the system depicted in Figure 4 we assume the

mode change from an operational mode M1 to an

operational mode M2 such that task T1 will be removed

from Core1 (i.e. T1 is a finished task) and tasks T5, T6

and T7 will be added to Core1 and Core2 (i.e. T5, T6, T7

are added tasks). The rest of the tasks, T4, T8 and T9

represent unchanged tasks and execute independent of

the mode change.

In case an asynchronous mode change protocol is

employed, tasks which belong to both modes will coexist

in the system, i.e. all the tasks depicted in Figure 4. The

overlapping execution of these tasks generates an

increased load, which translates into an increase of the

tasks’ worst-case response times (WCRTs) - Figure 7.

Relying on different assumptions, several mode

change protocols and dedicated analysis methods have

been developed by the real-time research community for

handling mode transitions in multi-mode single- and

multi-processor systems (e.g. [9,12,13,14]). These allow

computing task worst-case response times (WCRTs) in

each individual operational mode and during the

transition phases between every two modes. Figure 7

depicts the worst-case response time behaviour for the

lower priority tasks T8 and T9.

Figure 7 Tasks’ worst-case response times. Illustration

of a possible settling behaviour as effect of a mode change.

However, most of the existing solutions assume that

systems consist of independent tasks, i.e. there is no

communication and no precedence constraints between

tasks. In [9] and [10] it was shown that in case of

distributed applications, the initiation of a mode change

has not only a local effect but also impacts the timing of

tasks executing on other processors. The mode change

leads to a change in the execution and communication

demand on a processor (e.g. Core1). As there are tasks

which communicate across the processors (e.g. tasks T8

and T9), the transient timing behaviour of tasks on a

processor during the transition phase will propagate to

the interconnected tasks and will impact the timing of

the tasks executing on other processors. This transient

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 6

effect, initiated on a core may occur on other core long

time after the mode change was performed [9,10].

Therefore, computing only the WCRTs in each

individual mode and during every transition between two

modes is not enough. The duration of the transition

phases has to be computed and considered at design

time.

In the example above we have considered that the

system could switch only between two modes. However,

complex real-time systems might have to switch between

multiple modes at runtime. In that case, if a mode change

request would trigger the transition from a mode M2 to a

mode M3 before the transition phase from mode M1 to

mode M2 has been completed, tasks of the three modes

(i.e. M1, M2 and M3) could potentially execute at the

same time on the cores. In this case the tasks’ worst-case

response times could increase over the deadlines. This is

illustrated for task T8 and T9 in Figure 7 (see dashed red

line). Therefore, the system transition latency, i.e. the

duration of the system-wide transition phases between

two modes, has to be computed in order to avoid the

overlap of multiple mode changes that can cause

violation of the timing constraints.

A solution that allows deriving mode change

transition latencies of multi-mode distributed

applications was proposed in [10].

4. New design options for multi-mode

applications on multi-core real-time systems

With the advent of multi-core designs, the platform

engineer is confronted with different problems, such as

how to partition the tasks and runnables efficiently over

the complete spectrum of operating conditions, and how

to organize data handovers between cores. In addition, as

motivated in Section 2, mode changes have to be given

better attention in multi-core setups.

With respect to the considered automotive case study,

in Section 2 we have shown that the methodology

available for timing and performance design can be

applied to real-time systems which accommodate tasks

with angular recurrence. However, these methods only

suit the current automotive practice, where overly

pessimistic measures are applies in order to permit the

safe system functionality in critical situations (e.g. by

aborting tasks or by reducing their computational

requirements in case of increased processor load at high

engine speeds).

Based on current research results (discussed in

Section 3) we propose to map the problem of scheduling

real-time applications which accommodate tasks with

angular recurrence to the problem of scheduling multi-

mode applications on multi-core real-time systems.

Relying on this, we next discuss new options for the

design and analysis of future multi-core real-time

embedded systems.

Design options for multi-core real-time systems

with engine-synchronous tasks

In the present example, the task modes are selected

based on engine speed. This implies that at a threshold

speed (e.g. a speed where the system switches from a

high quality to a low quality mode), the system can be in

one of two modes, depending on whether the vehicle is

accelerating or decelerating. Both situations need to be

considered in order to identify the most critical scenario,

and to choose threshold values correspondingly. With

respect to our case study, the question is:

What are the engine speeds at which mode changes

have to be initiated such that (i) the impact on the

system’s timing is minimum and (ii) the timing

constraints are certainly met on all cores?

This question was relatively easy to answer for

single-core setups. But, mode changes in multi-core

systems imply a more complex behaviour where the load

change during execution is not necessarily monotonous.

Figure 8 Multiple mode changes in order to avoid

overload at different RPM values.

Thus, an analysis is required that allows to quantify

the mode change latency and the peak load and task

response times during all transitions (illustration in

Figure 8). Based on these values, the threshold rpm

values can be computed:

(i) When accelerating, the mode change has to be

initiated (i.e. trigger a mode change request MCR) in

sufficient time before the engine speed imposes a non-

schedulable situation at a critical point CP rpm. For

example, assume task T5, T6 and T7 in Figure 4 have to

be dropped-off at 4500rpm (and similarly T8 and T9 at

5500rpm) in order to avoid an overload situation e.g. at

the critical point 4600rpm (5600rpm respectively).

Instead of just dropping-off these tasks a controlled

removal of them should be initiated in enough time

before the system reaches a non-schedulable situation.

The mode change transition latencies (see [10]),

corresponding to the mode changes that consist of

stopping tasks, have to be computed for different

assumptions regarding the moment of triggering the

MCR. The calculation can be performed with the

analysis method in [10].

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 7

For each critical point CP rpm, the engine speed X

rpm (X < CP) will be identified such that the duration of

the mode change during acceleration initiated at X rpm

(i.e. the mode change transition latency denoted here

with LA(X)) is less than the time the engine needs to

accelerate from X rpm to CP rpm (i.e. Δt(X,CP) - see

extended system model in Section 3.1).

 (ii) When decelerating, the mode change that aims at

restarting tasks can only be initiated when the engine

speed indicates sufficient headroom in order to allow

successful scheduling also during the mode change

transition. When decelerating from 5500rpm to 4500rpm

a change from a low level load (LL) to a high level load

(LH) is performed. The previously dropped tasks could

be restarted “too early” to each other, fact that would

lead to an overlap of multiple mode changes. As

indicated in Section 3 this could lead to an overload

situation. Thus, the mode change transition latencies

have to be calculated (e.g. with [10]) for each required

mode change during deceleration.

Furthermore, when decelerating, a mode change that

consists of restarting tasks should be initiated only if

there is sufficient headroom in order to allow the

successful scheduling also in case of a sudden

acceleration, i.e. if there is enough time to remove again

the tasks before the critical points. Thus, the engine

speed Y rpm (Y < X) has to be identified such that the

duration of the mode change during deceleration

initiated at Y rpm (i.e. LD(Y)) is less than the time the

engine needs to suddenly accelerate from Y rpm to X

rpm (i.e. LD(Y) = LA(Y) < Δt(Y,X)).

For each critical point CP rpm the timing constraints

will not be violated if the system is designed such that

mode change transition latencies exhibit a hysteresis

around an engine speed X rpm (X < CP) that can be

identified as indicated above at (i) and (ii). An example

is illustrated in Figure 9 and 10.

Due to mechanical characteristics (e.g. flywheel inertia)

the time an engine needs to accelerate or decelerate is

large (see Figures 6 and 10) in comparison to the

execution time of the functions on the engine control

units. Thus, if fast mode changes can be guaranteed,

mode change protocols can be employed in order to

avoid the service degradation resulting from the overly

pessimistic measures applied in the current practice.

Figure 9 Mode changes shall be initiated at Xrpm

during acceleration and at Yrpm during deceleration in

order to avoid a non-schedulable situation at CPrpm.

Figure 10 Complex mode changes are possible if there is

enough headroom for mode change transition latencies.

However, as shown in Section 3, the timing behaviour

of complex multi-mode applications on multi-core

processors requires increased attention. Analysis

methods have to be used for computing mode change

transition latencies in order to ensure the safe system

functionality.

5. Conclusion

In this paper we highlighted the implications of multi-

mode applications and scenario-dependent behaviour on

the system's timing. An automotive specific use case was

presented that demonstrates the need for tool supported

timing analysis methods. We provided an overview on

recent progress in the field of scheduling analysis.

Current analysis methods allow taking into account the

mode transition latency and thus enable the safe

provisioning of multi-mode applications in multi-core

environments in the future.

Even though the explanations rely on automotive

specific use cases the challenges highlighted here apply,

in specific variations, also to other application domains

e.g. avionics.

References

[1] Freescale, “Rationale for Multicore Architecture in Auto

Apps,” Freescale Technology Forum, June 2011.

[Online]http://www.freescale.com/files/training_pdf

/WBNR_FTF11_AUT_F0166.pdf

[2] AbsInt, aiT WCET Analyser,

[Online] http://www.absint.com/ait/

[3] Symtavision GmbH, SymTA/S tool.

[Online] http://symtavision.com/symtas.html

[4] OSEK Consortium, “OSEK OS Specification v2.2.3,”

[Online] http://www.osekvdx.org/, February 2005.

[5] AUTOSAR GbR, “Specification of RTE v3.0.0”,

[Online] http://www.autosar.org/

[6] AUTOSAR GbR, “Virtual Functional Bus v2.0.0”,

[Online] http://www.autosar.org/

[7] AUTOSAR GbR, “Specification of Basic Software

Mode Manager v1.1.0” [Online] http://www.autosar.org/

[8] AUTOSAR GbR, “Specification of Multi-Core OS

Architecture v1.0.0,” [Online] http://www.autosar.org/

[9] R. Henia and R. Ernst, “Scenario Aware Analysis for

Complex Event Models and Distributed Systems”, In

Proc. of the Real-Time Systems Symposium, Dec. 2007.

http://www.freescale.com/files/training_pdf/WBNR_FTF11_AUT_F0166.pdf
http://www.freescale.com/files/training_pdf/WBNR_FTF11_AUT_F0166.pdf
http://www.absint.com/ait/
http://symtavision.com/symtas.html
http://www.osekvdx.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/

ERTS
2
 2012 – February 1 – 3, 2012 Toulouse 8

[10] M. Negrean, M. Neukirchner, S.Stein, S.Schliecker and

R. Ernst, “Bounding Mode Change Transition Latencies

for Multi-Mode Real-Time Distributed Applications“,

16th IEEE Conf. on Emerging Technologies and Factory

Automation, Sept. 2011.

[11] P. Podevin, G. Descombes, P. Marez, and F. Dubois, “A

study of turbocharged Diesel engine during sudden

acceleration. Set up and exploitation of a specific test

rig.” in Internal Combustion Engine Division of ASME,

Oct. 1999.

[12] J. Real and A. Crespo, “Mode Change Protocols for Real

Time Systems: A Survey and a New Proposal”. Real-

Time Systems, 26(2):161–197, March 2004.

[13] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode

Changes in Priority Pre-emptively Scheduled Systems,”

in Proc. of the Real-Time Systems Symposium, 1992, pp.

100–109.

[14] P. Yomsi, V. Nelis and J. Goossens, “Scheduling Multi-

 Mode Real-Time Systems upon Uniform Multiprocessor

Platforms”, 15th IEEE Conference on Emerging

Technologies and Factory Automation, Sept. 2010.

