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Abstract Driven by the increasing demand for 

computational power and by the rising applications’ 

complexity in various embedded application domains, 

multi-core solutions emerge as the predominant platform 

for embedded real-time applications. In this context, 

designers have to face new challenges generated by the 

need to accommodate applications with complex timing 

behaviour, e.g. multi-mode applications that can switch 

between different operational modes at runtime. 

Consequently the availability of appropriate timing 

analysis methods for the prediction of the timing 

behaviour is essential for the design of multi-core real-

time systems. 

Relying on current automotive practice and on related 

work of the real-time research community we explain 

and exemplify how tool supported formal analysis 

methods can be applied to current and upcoming 

industrial design. We present recent progress in the field 

of scheduling analysis methods and discuss challenges 

and new options in the design of multi-mode 

applications on multi-core real-time systems. 

Keywords Schedulability analysis, timing analysis, 

multi-mode applications, multi-core, real-time  

1. Introduction 

Multi-core architectures  

Driven by power constraints, cost-efficiency and 

performance requirements, embedded system designs 

adopt the trend towards multi-core architectures (e.g. 

[1]). The new multi-core processors are aimed to host the 

significant increase in the computational workload of 

next generations embedded applications on as few 

processors as possible. By using powerful multi-core 

processors, it will be possible to integrate multiple 

functionalities into a single chip or to parallelize 

complex computations over multiple cores, e.g. in 

relatively high-performance domains such as engine 

control or advanced driver assistance systems.  

Some of these complex functions consist of tasks that 

exhibit a dynamic behaviour at runtime, e.g. engine 

speed synchronous tasks in the automotive power train 

controllers. Engine-synchronous tasks are periodic tasks 

whose recurrence depends on the camshaft and 

crankshaft positions that vary with the engine speed. The 

variable recurrence of these tasks at runtime leads to a 

continuous change in the configurations that have to be 

taken into account for the OS schedule on the processors 

and leads to a multi-mode behaviour of the entire 

system.  

The multi-mode behaviour of such systems is, 

however, much more complex. The load associated with 

the engine-synchronous tasks increases with the engine 

speed due to the higher rate of activations. If no 

measures are in place, the load on the controllers may 

eventually increase above a critical value making the 

system unschedulable and the engine control inefficient 

or even unstable. Furthermore, when multi-mode 

applications, potentially consisting of communicating 

tasks, have to be accommodated on multi-core platforms 

the timing behaviour of the entire system is challenged 

and requires increased attention.  

Analysis methods and tools  

Consequently, appropriate methods for the prediction 

of the timing behaviour are required for the design of 

reliable multi-core real-time systems. Scheduling and 

performance analysis techniques aim to help designers in 

detecting infeasible system configurations in the early 

design phases and therewith to prevent costly design 

mistakes. Currently, sophisticated tools (e.g. aiT [2], 

SymTA/S [3]) for timing analysis at the code-level, 

controller-level and networked system-level are 

becoming state-of-the-art for efficient timing 

verification. However, in the perspective of advanced 

multi-core environments the methodologies have to be 

extended to face the arising challenges.  

Contribution 

In this paper, we address this problem and show how 

tool supported analysis methods can be applied to the 

current and upcoming industrial design. We highlight the 

implications of accommodating multi-mode applications 

on multi-core systems and identify the need for enhanced 

solutions for timing and performance design. The 

analysis approaches proposed so far do not suit real-time 

systems which accommodate tasks with angular 
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recurrence, as can be found in automotive power train 

controllers. We identify similarities between the problem 

of scheduling real-time applications which accommodate 

tasks with angular recurrence and the problem of 

scheduling multi-mode applications. Relying on recent 

progress in the field of scheduling analysis for multi-

mode applications, we propose new options for the 

design and analysis of complex multi-core real-time 

embedded systems. 

2. Case study description 

In what follows, we introduce an automotive specific 

use case in order to explain and exemplify how tool 

supported formal analysis methods are used in the 

current automotive practice and how these methods can 

be also applied to the foreseeable automotive multi-core 

setups.  

The setup depicted in Figure 1 corresponds to a 

partitioned multiprocessor system where the two cores 

are independently scheduled according to a fixed-priority 

scheduler (e.g. OSEK/VDX [4]). The system consists of 

several periodic tasks and some high priority “engine-

synchronous” tasks that measure the current engine state 

and control actuators such as fuel injection several times 

per engine rotation. All engine synchronous tasks are 

mapped to Core2. In this way we consider a simplified 

configuration of a current power train application (i.e. 

engine control) and envisage a possible implementation 

on the future multi-core architectures. 

 

Figure 1 Dual-Core processor with inter-core 

communication. 

Our assumption is that the only degree of variance in 

this system is given by the engine speed, measured in 

revolutions per minute (rpm). Thus, depending on the 

engine speed the activation of the engine-synchronous 

tasks will vary. For example, an engine-synchronous 

task that is activated each 360
0
 (i.e. each 1 rotation) at 

1000rpm has a recurrence of 60ms and 10ms at 

6000rpm.  

With increasing engine speed, the load increases due 

to the higher rate of activations. Figure 2 illustrates the 

load situation for the dual-core system in Figure 1.  

 

 

Figure 2 Workload to be processed on each core. 

Increasing engine speed leads to higher rate of activation 

for engine-synchronous tasks. In addition task modes lead 

to varied workload. Critical load on Core 2 is reached 

around 3500 and 5500 rpm.  

2.1. Impact of mode changes on processor load 

If no further measures are in place, the load may 

eventually increase above a critical value, making the 

system unschedulable and the engine control inefficient 

or even unstable. Different solutions are therefore 

applied in order to reduce the workload at high engine 

speeds. For example, some tasks are changing their 

behaviour at higher engine speeds, computing only 

rough control values (i.e. tasks reduce their execution 

times). Furthermore, other tasks are aborted when the 

engine speed reaches a critical value. In this way, 

automotive power train controllers resort to mode 

change mechanisms in order to perform at a high quality 

for low engine speeds and to adequately operate also 

under high engine speeds. 

This behaviour can be reflected in a scheduling model 

of the system. Let’s assume that starting e.g. at 3500rpm, 

the engine-synchronous tasks change their behaviour and 

some internal functions are completely shut-off (e.g. 

“high-quality mode” to “medium quality mode”). Later 

e.g. at 5500rpm, additional functions are turned off (e.g. 

“low quality mode”). In addition, some functions 

provided by the periodic tasks are reactive to the current 

processor load. This task flexibility ensures that the 

schedulability is maintained through the complete 

spectrum of operating conditions. 

The diagram in Figure 2 shows the task workload that 

has to be serviced by each core, ignoring any inter-core 

communication effects. For each possible engine speed 

the load is computed based on the  

 Period and execution time for the periodic tasks, 

where the execution time can be a function of the 

engine speed and the 

 Rate of activation and execution time for the 

engine-synchronous tasks, where the rate of 

activation is and the execution time can be a 

function of the engine speed. 
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One can see the effect of changed task behaviour at 

engine speeds 3500rpm and 5500rpm, where task 

RPM_2 is put into a reduced quality mode. In addition, 

also some periodic tasks in this example have increased 

execution time requirements at certain engine speeds 

(which leads to a slight load variation on Core1 at 2500 

and 4500 rpm). 

This diagram can be easily produced with a model 

based scheduling analysis tool (such as SymTA/S [3]). 

Each engine speed can be seen as a different scenario, in 

which the corresponding model parameters are set (for 

example through scripting or a dedicated user interface). 

For large range of engine speeds the granularity of 

500rpm will be sufficient, because the behaviour can be 

assumed to be largely monotonous with respect to 

increasing engine speed. In addition, any engine speed at 

which a task behaviour changes should be included in 

the experiments.  

2.2. Suggested procedure for analysis 

Simple case adapted from single-core process 

Of course the processor load alone is not a sufficient 

metric to show the schedulability of the system, because 

it does not allow for checking the adherence to typical 

timing constraints such as latency. For example, a 

latency constraint may be associated with task RPM_2 

which requires the task to recompute a control parameter 

for the injection no later than 1ms after it has been 

activated.  

Also here, performance analysis has to be performed 

for all potential run-time scenarios. With the scripting 

support in model-based analysis tools such as SymTA/S 

[3] this can be easily achieved today. Figure 3 shows the 

results of a series of experiments capturing the timing 

conditions for different engine speeds. The worst-case 

response times have been computed using the busy 

window technique provided by the tool mentioned 

above. The graph shows that in the given setup: 

 The engine synchronous task RPM_2 experiences 

a decreased response time at higher engine 

speeds. This is due to the skipping of functions at 

engine speeds above 3500 and 5500 rpm. 

 A lower priority periodic task (called OS2_20ms) 

has significant variance in its worst-case response 

time: Generally its response time will increase at 

higher engine speeds (due to increased number of 

interrupts by engine synchronous tasks), but this 

effect is compensated by the choice of dropping 

functions. In effect it can be seen that task 

OS2_20ms has its peak response time at 

3500rpm. 

This kind of diagram allows the verification of global 

timing constraints via the quick identification of critical 

scenarios. Such scenarios can then be investigated in 

more detail. In addition the diagram highlights scenarios 

which are overly safe, i.e. where functions are maybe 

dropped without need. 

 

Figure 3 Response times of task RPM_2 and OS2_20ms 

at different engine speeds.  

Complex case for future multi-core applications 

As previously discussed, a simple and fast way to 

treat critical situations in the industrial practice (e.g. in 

case of increased load at high engine speeds) is to just 

abort some of the processed system functions in order to 

permit the safe execution of critical functions. However, 

even if by implementing severe solutions the safe system 

functionality can be ensured (e.g. by aborting tasks or by 

reducing their computational requirements), the resulting 

service degradation is not convenient and will become 

unacceptable with the increasing requirements for lower 

emissions and continued demands for improved fuel 

economy. 

When functions are suddenly aborted, just like in case 

of processor interrupts, data are lost. Instead of executing 

such sharp transitions, gradual mode transitions are 

preferable such that functions can be continued or 

resumed later.  

In what follows we provide an overview on recent 

progress in the field of scheduling analysis for multi-

mode applications. Relying on this, in Section 4 we will 

further discuss new options for the design of multi-core 

real-time systems, options that could be applied in order 

to avoid the service degradation resulting from the 

overly pessimistic measures applied in the current 

practice. 

3. Multi-mode systems 

Similar to the automotive control systems, other real-

time systems that can change their functionality over 

time and execute in different operational modes can be 

found in different application domains, for example in 

safety-critical avionic or in multimedia smart devices. 

Such systems may have to adapt their behaviour during 

runtime to changing conditions in the environment or in 

the system itself. To properly handle this behaviour, 

operational modes and mode change protocols which 

control the transition between the modes have to be 

defined.  



ERTS
2
 2012 – February 1 – 3, 2012 Toulouse    4 

 

3.1. Real-time system model 

For the next explanations we abstract the dual-core 

system in Figure 1 and further refer to the system 

depicted in Figure 4. 

 
Figure 4 Illustration of a dual-core processor with inter-

core communication. 

Classic system model in the real-time research 

In literature, real-time systems are usually modelled 

as a set of tasks T = {T1, T2, …, Tn} which are mapped 

and executed on a set of processing (CPUs) and 

communication (Busses) resources. Tasks have priorities 

allocated and their execution is performed according to a 

scheduling policy. As exemplified above, in the current 

automotive practice tasks are statically mapped on the 

processors and are scheduled according to a fixed-

priority scheduling, i.e. according to the OSEK/VDX 

specification [4].  

The activation of a task is triggered by an activating 

event, which may be the result of timer expiration, an 

external or internal interrupt (I1, I4, I5 and I8 in Figure 4 

represent the event sources at the task input), or the 

result of another task being finished.  

In general, tasks are characterized by their execution 

times, their activation periods and their deadlines, which 

may be smaller, equal, or larger than the periods. These 

parameters are expressed in time units. 

Extended system model   

Engine-synchronous tasks are a special type of 

periodic tasks, which have been neglected so far by the 

real-time research community. The recurrences of the 

engine-synchronous tasks are expressed in engine angle 

degree rather than time. For example, let’s assume that 

task T2 in Figure 4 is activated each 90
0
 (i.e. four time in 

each rotation) and task T3 each 360
0
. In order to obtain a 

system-wide unique time base, for each fixed engine 

speed at which an engine-synchronous task is to be 

specified, the angular recurrence has be transformed in 

time units. The activation periods of the engine-

synchronous tasks T2 and T3 at different fixed engine 

speed values are given in Table 1.  

Table 1 Parameters of the engine-synchronous tasks 

 
 

In order to capture more exactly the behaviour of 

engine-synchronous tasks, the time duration an engine 

needs to accelerate or decelerate between two discrete 

engine speed values rpm1 and rpm2 can be modelled 

with a time interval Δt(rpm1, rpm2) (see Figure 5).  

 

Figure 5 Time intervals between two constant engine-

speed values. 

In practice, these time intervals depend on the gear, 

on the current cruising speed and the driving behaviour, 

and can be obtained e.g. by analysing the acceleration 

behaviour of a car using test benches [11] or by relying 

on real field tests. The results in [11] indicate for a 

particular setup an acceleration phase of 20sec from 

1000rpm to 3000rpm in the 4th gear and of 35sec in the 

5th gear. Figure 6 depicts a possible scenario during 

acceleration. 

 
Figure 6 Example of engine-speed variation over time 

during an acceleration phase. 

In order to handle the worst-case timing behaviour, 

the smallest time intervals, during acceleration and 

deceleration, between discrete engine speed values (i.e. 

the highest activation rate) have to be assumed.  

3.2. Mode change model 

The dual-core system in Figure 4 accommodates 

several independent periodic tasks, two distributed 

applications consisting of communicating tasks and two 

engine-synchronous tasks. Task priorities are indicated 

by their indices, where the lowest numerical index 

indicates the highest priority.  

In case such systems may execute in different 

operational modes these can be specified by a finite set 

M = {M1, M2, …, Mx}. Each mode Mi (Mi ϵ M) is 

characterized by a different behaviour and is associated 

with a specific set of tasks (a subset of T) together with 

its timing properties, e.g. task execution times, priorities 

and deadlines.  

In response to Mode Change Requests (MCR), 

initiated by the environment or by system internal 

events, multi-mode systems will experience transitions 

from an old operational mode (e.g. M1) characterized by 



ERTS
2
 2012 – February 1 – 3, 2012 Toulouse    5 

 

a set of functionalities, to a new operational mode (e.g. 

M2) characterized by a different or a changed set of 

functionalities. For example, assume that at runtime a 

mode change request (MCR) triggers a transition from 

an operational mode M1 to an operational mode M2 

such that task T1 will be removed from Core1 and tasks 

T5, T6 and T7 will be added on Core1 and Core2. 

In literature, the tasks executing in a multi-mode 

system are categorized depending on their behaviour 

when a mode change request (MCR) occurs as follows:  

(i) old tasks, which are immediately aborted when a 

MCR occurs;  

(ii) finished or completed tasks, which are present in the 

old execution mode, but not in the new one. These 

tasks are allowed to finish their execution during 

the transition phase which follows the MCR; 

(iii) new or added tasks, which are either introduced for 

the first time after the MCR or represent a modified 

version of old tasks, e.g tasks that change their 

parameters - execution time or activating event 

model;  

(iv) unchanged tasks which are present in both 

configurations and remain unchanged in their 

parameters during the transitions. 

3.3. Mode change protocols 

To control the transition between operational modes 

designers can opt for synchronous or asynchronous 

protocols [12]. The current AUTOSAR specifications 

related to the mode-management topic indicate the 

support for the same two types of mode change protocols 

[5,6,7].  

Synchronous and asynchronous protocols differ in the 

way they handle new and finished tasks during the 

transition phase which follows a MCR.  

Synchronous protocols, as opposed to asynchronous 

protocols, do not allow new mode tasks to be released 

until all finished tasks have completed their last 

activation corresponding to the old mode. In this way 

synchronous protocols ensure isolation between the 

execution of mode specific functionalities. Synchronous 

protocols do not require specific schedulability analysis 

for the transition phase. However, delaying the start of 

the new mode applications is not always suitable as this 

could counter the timing of new mode actions which 

must be performed as soon as possible (e.g. when 

switching to an emergency mode).  

Asynchronous protocols overcome the limitation of 

synchronous protocols and allow functions of the new 

mode to be started simultaneously to the old mode 

functions. However, increased attention is required, as 

the execution of functions of both modes generates an 

increased workload during the transition phase, fact that 

can lead to timing violations [9,12,13]. Therefore, 

asynchronous protocols require specific schedulability 

analysis. 

3.4. Challenges and analysis methods  

For the system depicted in Figure 4 we assume the 

mode change from an operational mode M1 to an 

operational mode M2  such that task T1 will be removed 

from Core1 (i.e. T1 is a finished task) and tasks T5, T6 

and T7 will be added to Core1 and Core2 (i.e. T5, T6, T7 

are added tasks). The rest of the tasks, T4, T8 and T9 

represent unchanged tasks and execute independent of 

the mode change. 

In case an asynchronous mode change protocol is 

employed, tasks which belong to both modes will coexist 

in the system, i.e. all the tasks depicted in Figure 4. The 

overlapping execution of these tasks generates an 

increased load, which translates into an increase of the 

tasks’ worst-case response times (WCRTs) - Figure 7.  

Relying on different assumptions, several mode 

change protocols and dedicated analysis methods have 

been developed by the real-time research community for 

handling mode transitions in multi-mode single- and 

multi-processor systems (e.g. [9,12,13,14]). These allow 

computing task worst-case response times (WCRTs) in 

each individual operational mode and during the 

transition phases between every two modes. Figure 7 

depicts the worst-case response time behaviour for the 

lower priority tasks T8 and T9.  

 

Figure 7 Tasks’ worst-case response times. Illustration 

of a possible settling behaviour as effect of a mode change. 

However, most of the existing solutions assume that 

systems consist of independent tasks, i.e. there is no 

communication and no precedence constraints between 

tasks. In [9] and [10] it was shown that in case of 

distributed applications, the initiation of a mode change 

has not only a local effect but also impacts the timing of 

tasks executing on other processors. The mode change 

leads to a change in the execution and communication 

demand on a processor (e.g. Core1). As there are tasks 

which communicate across the processors (e.g. tasks T8 

and T9), the transient timing behaviour of tasks on a 

processor during the transition phase will propagate to 

the interconnected tasks and will impact the timing of 

the tasks executing on other processors. This transient 
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effect, initiated on a core may occur on other core long 

time after the mode change was performed [9,10]. 

Therefore, computing only the WCRTs in each 

individual mode and during every transition between two 

modes is not enough. The duration of the transition 

phases has to be computed and considered at design 

time.  

In the example above we have considered that the 

system could switch only between two modes. However, 

complex real-time systems might have to switch between 

multiple modes at runtime. In that case, if a mode change 

request would trigger the transition from a mode M2 to a 

mode M3 before the transition phase from mode M1 to 

mode M2 has been completed, tasks of the three modes 

(i.e. M1, M2 and M3) could potentially execute at the 

same time on the cores. In this case the tasks’ worst-case 

response times could increase over the deadlines. This is 

illustrated for task T8 and T9 in Figure 7 (see dashed red 

line). Therefore, the system transition latency, i.e. the 

duration of the system-wide transition phases between 

two modes, has to be computed in order to avoid the 

overlap of multiple mode changes that can cause 

violation of the timing constraints.  

A solution that allows deriving mode change 

transition latencies of multi-mode distributed 

applications was proposed in [10]. 

4. New design options for multi-mode 

applications on multi-core real-time systems  

With the advent of multi-core designs, the platform 

engineer is confronted with different problems, such as 

how to partition the tasks and runnables efficiently over 

the complete spectrum of operating conditions, and how 

to organize data handovers between cores. In addition, as 

motivated in Section 2, mode changes have to be given 

better attention in multi-core setups.  

With respect to the considered automotive case study, 

in Section 2 we have shown that the methodology 

available for timing and performance design can be 

applied to real-time systems which accommodate tasks 

with angular recurrence. However, these methods only 

suit the current automotive practice, where overly 

pessimistic measures are applies in order to permit the 

safe system functionality in critical situations (e.g. by 

aborting tasks or by reducing their computational 

requirements in case of increased processor load at high 

engine speeds). 

Based on current research results (discussed in 

Section 3) we propose to map the problem of scheduling 

real-time applications which accommodate tasks with 

angular recurrence to the problem of scheduling multi-

mode applications on multi-core real-time systems. 

Relying on this, we next discuss new options for the 

design and analysis of future multi-core real-time 

embedded systems. 

Design options for multi-core real-time systems 

with engine-synchronous tasks 

In the present example, the task modes are selected 

based on engine speed. This implies that at a threshold 

speed (e.g. a speed where the system switches from a 

high quality to a low quality mode), the system can be in 

one of two modes, depending on whether the vehicle is 

accelerating or decelerating. Both situations need to be 

considered in order to identify the most critical scenario, 

and to choose threshold values correspondingly. With 

respect to our case study, the question is:  

What are the engine speeds at which mode changes 

have to be initiated such that (i) the impact on the 

system’s timing is minimum and (ii) the timing 

constraints are certainly met on all cores? 

This question was relatively easy to answer for 

single-core setups. But, mode changes in multi-core 

systems imply a more complex behaviour where the load 

change during execution is not necessarily monotonous. 

 

Figure 8 Multiple mode changes in order to avoid 

overload at different RPM values. 

Thus, an analysis is required that allows to quantify 

the mode change latency and the peak load and task 

response times during all transitions (illustration in 

Figure 8). Based on these values, the threshold rpm 

values can be computed: 

(i) When accelerating, the mode change has to be 

initiated (i.e. trigger a mode change request MCR) in 

sufficient time before the engine speed imposes a non-

schedulable situation at a critical point CP rpm. For 

example, assume task T5, T6 and T7 in Figure 4 have to 

be dropped-off at 4500rpm (and similarly T8 and T9 at 

5500rpm) in order to avoid an overload situation e.g. at 

the critical point 4600rpm (5600rpm respectively). 

Instead of just dropping-off these tasks a controlled 

removal of them should be initiated in enough time 

before the system reaches a non-schedulable situation.  

The mode change transition latencies (see [10]), 

corresponding to the mode changes that consist of 

stopping tasks, have to be computed for different 

assumptions regarding the moment of triggering the 

MCR. The calculation can be performed with the 

analysis method in [10].  
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For each critical point CP rpm, the engine speed X 

rpm (X < CP) will be identified such that the duration of 

the mode change during acceleration initiated at X rpm 

(i.e. the mode change transition latency denoted here 

with LA(X)) is less than the time the engine needs to 

accelerate from X rpm to CP rpm (i.e. Δt(X,CP) - see 

extended system model in Section 3.1).  

 (ii) When decelerating, the mode change that aims at 

restarting tasks can only be initiated when the engine 

speed indicates sufficient headroom in order to allow 

successful scheduling also during the mode change 

transition. When decelerating from 5500rpm to 4500rpm 

a change from a low level load (LL) to a high level load 

(LH) is performed.  The previously dropped tasks could 

be restarted “too early” to each other, fact that would 

lead to an overlap of multiple mode changes. As 

indicated in Section 3 this could lead to an overload 

situation. Thus, the mode change transition latencies 

have to be calculated (e.g. with [10]) for each required 

mode change during deceleration.  

Furthermore, when decelerating, a mode change that 

consists of restarting tasks should be initiated only if 

there is sufficient headroom in order to allow the 

successful scheduling also in case of a sudden 

acceleration, i.e. if there is enough time to remove again 

the tasks before the critical points. Thus, the engine 

speed Y rpm (Y < X) has to be identified such that the 

duration of the mode change during deceleration 

initiated at Y rpm (i.e. LD(Y)) is less than the time the 

engine needs to suddenly accelerate from Y rpm to X 

rpm (i.e. LD(Y) = LA(Y) < Δt(Y,X)).  

For each critical point CP rpm the timing constraints 

will not be violated if the system is designed such that 

mode change transition latencies exhibit a hysteresis 

around an engine speed X rpm (X < CP) that can be 

identified as indicated above at (i) and (ii). An example 

is illustrated in Figure 9 and 10. 

Due to mechanical characteristics (e.g. flywheel inertia) 

the time an engine needs to accelerate or decelerate is 

large (see Figures 6 and 10) in comparison to the 

execution time of the functions on the engine control 

units. Thus, if fast mode changes can be guaranteed, 

mode change protocols can be employed in order to 

avoid the service degradation resulting from the overly 

pessimistic measures applied in the current practice. 

 

Figure 9 Mode changes shall be initiated at Xrpm 

during acceleration and at Yrpm during deceleration in 

order to avoid a non-schedulable situation at CPrpm. 

 
Figure 10 Complex mode changes are possible if there is 

enough headroom for mode change transition latencies.  

However, as shown in Section 3, the timing behaviour 

of complex multi-mode applications on multi-core 

processors requires increased attention. Analysis 

methods have to be used for computing mode change 

transition latencies in order to ensure the safe system 

functionality.  

5. Conclusion 

In this paper we highlighted the implications of multi-

mode applications and scenario-dependent behaviour on 

the system's timing. An automotive specific use case was 

presented that demonstrates the need for tool supported 

timing analysis methods. We provided an overview on 

recent progress in the field of scheduling analysis. 

Current analysis methods allow taking into account the 

mode transition latency and thus enable the safe 

provisioning of multi-mode applications in multi-core 

environments in the future. 

Even though the explanations rely on automotive 

specific use cases the challenges highlighted here apply, 

in specific variations, also to other application domains 

e.g. avionics. 
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