
How RMAP improves in-flight update of on-board
software via SpaceWire

SpaceWire Missions and Applications, Short Paper

Holger Michel, Adrian Belger, Björn Fiethe, Tobias
Lange, Harald Michalik

Institute of Computer and Network Engineering
Technische Universität Braunschweig

Braunschweig, Germany
michel@ida.ing.tu-bs.de

 Martin Kolleck
Max Planck Institute for Solar System Research

Göttingen, Germany

Abstract—Modern space probes such as Solar Orbiter employ
a SpaceWire network to connect to on-board computer (OBC),
solid state mass memory (SSMM), and scientific instruments.
Management of SpaceWire links within scientific instruments is
typically performed by a data processing module (DPM)
featuring a space qualified processor that is executing on-board
software. To adapt to changing mission requirements, account
for failures and fix possible software bugs, the ability of
uploading and patching instrument software is mandatory.
However uploading and over-writing of the software’s boot
image cannot securely be performed by the software itself. If
over-writing the boot image fails, the remaining image might be
corrupted. So the processor may not be able to reboot
successfully and no further upload would be possible. Therefore
reception of uploaded patches must be performed by an
independent entity. Currently, this is accomplished by a
dedicated boot loader in separate memory area, to be qualified
according to ECSS criticality category B. This boot loader
processes uploading of patches and copies them to the second
boot area, where the actual software including the operating
system is stored. Due to the opportunity of modern processors to
handle SpaceWire RMAP accesses (e.g. SpW-RTC, UT699,
GR712RC [1], or upcoming NGMP [2]), it would be possible to
perform uploading and patching of the instrument software
independent of software execution using RMAP. This would
dramatically simplify the development, eliminate the need for a
class-B qualified boot loader, and will inherently improve
reliability, as reception of patches would entirely be performed
by hardware. This paper presents a possible update and patch
process for boot images using hardware based RMAP features.
Furthermore implications of the standard ECSS services
affecting such patching routines are discussed.

Index Terms—SpaceWire, RMAP, in-flight update, boot
loader, CCSDS PUS.

I. INTRODUCTION

In modern scientific instruments a data processing module
(DPM) handles processing of science data, instrument control,
and telecommand (TC), telemetry (TM) and housekeeping
(HK) communication. To receive TC and send TM and HK to

the on-board computer (OBC) and solid state mass memory
(SSMM) modern space probes such as Solar Orbiter or
BepiColombo are equipped with a SpaceWire network. The
DPM typically features a processor running instrument
software to process TC, generate TM and HK, and perform
instrument control. The instrument software is stored in a boot
memory contained in the DPM and is booted automatically on
power up. Due to changing scientific mission requirements or
handling of unexpected difficulties with the instrument, this
software may need to be exchanged or updated. Furthermore, if
in disregard of instrument changing scientific requirements, the
instrument was equipped with software that cannot be fixed
and updated it would be required to completely qualify the
software to almost highest ECSS criticality category. This
causes additional effort and limits possibilities like dynamic
memory allocation. Dynamic memory allocation in turn is
essential for fast external interfaces using direct memory access
(DMA).

II. TELECOMMAND (TC) AND HOUSEKEEPING (HK)

STANDARDS AND STRUCTURE

The standard for data structures in TC, TM, and HK packets in
ESA spacecrafts is ECSS-E-70-41A [3], which is based on
guidelines agreed on in the Consultative Committee for Space
Data Systems (CCSDS) such as reference document [4]. The
standard ECSS-E-70-41A [3] is a packet utilization standard
(PUS), defining the packet structure and a set of standard
services. For TC packets arriving at a scientific instrument, the
defined structure is depicted in Figure 1. Also this PUS [4]
defines a set of standard services. These services are functions
of the commanded entity e.g. the instruments DPM consisting
of a command, an action, and if applicable a reply. The
standard services are listed in Table I.

For a particular spacecraft the contractor building the
spacecraft platform performs a tailoring of this standard and
selects mandatory and optional services, the payload
instruments must be able to perform.

Table I : Table 1 standard service defined by ECSS-E-70-41A [2]

Service Type Service Name

1 Telecommand verification service

2 Device command distribution service

3 Housekeeping & diagnostic data reporting service

4 Parameter statistics reporting service

5 Event reporting service

6 Memory management service

7 Not used

8 Function management service

9 Time management service

10 Not used

11 On-board operations scheduling service

12 On-board monitoring service

13 Large data transfer service

14 Packet forwarding control service

15 On-board storage and retrieval service

16 Not used

17 Test service

18 On-board operations procedure service

19 Event-action service

Within that standard set of services, the service that can be
used to update the instrument software is service 6 subtype 2
“Load Memory using Absolute Addresses service”. After an
upload and storing of a new software version has finished, the
DPM would simply have to be rebooted. There is no standard
service for rebooting a payload instrument; one possibility is
to use the service 8 subtype 1 “Perform function” or to use a
set of private services, if they are allocated for the mission, to
implement the reboot function. It is not sufficient if a boot
loader supports only these two services, instead the boot
loader must also implement a set of minimal standard PUS
services, so that spacecraft requirements for nominal operation
are fulfilled and the spacecraft allows further operation and
does not power down the instrument, Table II lists an
exemplary set of services.

Table II : Exemplary collection of a set of services

Minimal services that need to be supported

Service 1: TC Verification Service

TM 1 1 TC acceptance success report

TM 1 2 TC acceptance failure report

TM 1 7 TC execution success report

TM 1 8 TC execution failure report

Service 6: Memory Management Service

TC 6 2 Load data into memory area using absolute address

TC 6 5 Dump memory area using absolute address

TM 6 6 Memory dump using absolute address Report

TC 6 9 Check memory area using absolute address

TM 6 10 Memory check using absolute address Report

Services for which the boot loader may need to generate a reply

that avoids tripping error detection by the OBC

Service 3: Housekeeping and Diagnostic Data Reporting Service

TM 3 25 Housekeeping Parameter Report

Service 5: Event Reporting Service

TM 5 1 Normal / Progress Report

TM 5 2 Error / Anomaly Report - Low Severity –Warning

TM 5 3 Error / Anomaly Report - Medium Severity - Ground Action

TM 5 4 Error / Anomaly Report - High Severity - On-board Action

Service 9: Time Management Service

Service 17: Test Service

TM 17 1 Connection Test Response

TM 17 2 Connection Test Response Report

Service 19: Event-Action Service

TC 19 1 Add an Event to the Detection List

TC 19 4 Enable Actions

TC 19 5 Disable Actions

III. CCSDS / PUS SERVICES IN SPACEWIRE PACKETS

In SpaceWire packets a protocol identifier defines the
packet type [6]. RMAP is assigned to the protocol identifier
value 0x01 and the CCSDS packet transfer protocol is assigned
to the protocol identifier value 0x02. [7] defines how packets
of the CCSDS packet transfer protocol are transmitted through
a SpaceWire network by appending addressing, protocol
identifier, a reserved and user application byte at the start of the
packet and an EOP marker at the end of the packet, see Figure
2.

Figure 2 : SpaceWire packet transporting a CCSDS packet as defined by [6]
ECSS-E-ST-50-53C

IV. BOOT MEMORY OPTIONS AND ARCHITECTURE

In order to avoid the effort of qualifying the entire
instrument software to highest ECSS criticality level and allow
for updates during space flight, current DPMs (such as for the

Figure 1 : CCSDS packet structure as refined by ECSS-E-70-41A [3]

Polarimetric and Helioseismic Imager (PHI) instrument on
Solar Orbiter) have a two stage boot process, as depicted in the
system in Figure 3. The default boot memory address range
(0x0000 0000-0x0FFF FFFC) of the employed LEON
processor connects to a non-volatile memory containing a
minimal boot loader plus an additional boot memory which is
larger in storage and the content of which can be exchanged. In
the case of Solar Orbiter PHI DPM a minimal PROM memory
could be implemented within the Microsemi RTAX2000
system FPGA and a redundant NOR-flash is used to store the
second boot image, which includes an RTEMS operating
system and the complete instrument software. The basic boot
loader will need to initialize processor registers and the
SpaceWire interface and implement a basic driver for the
SpaceWire interface. As the SpaceWire interface in processors
such as the GR712 RC [1] uses direct memory access a
substantial amount of software complexity and therefore boot
loader size is required. Subsequently the boot loader needs to
perform basic TC and TM handling and check if an update of
the boot software needs to be performed. As NOR-flash cannot
be written directly like a simple SRAM device, a driver
performing defined program sequences also needs to be
integrated in the boot loader.

Figure 3 : Instrument data processing module boot memory set-up

V. REMOTE MEMORY ACCES PROTOCOL (RMAP)

The SpaceWire Remote Memory Access Protocol (RMAP)
is a protocol that works over SpaceWire. This Protocol allows
reading and writing memory remotely in a SpaceWire node.
RMAP is defined in ECSS-E-ST-50-52C [5]. A memory write
transaction is depicted in Figure 4 and it consists of SpaceWire
addressing, protocol identifier, instruction, key, reply address,
initiator logical, transaction identifier, address, data length, data
and CRC-byte. In many radiation hard processors, such as e.g.
the Aeroflex Gasiler GR712RC [1] the Aeroflex UT700 etc.
the RMAP protocol is supported directly in hardware. In these
devices even the complete address space from the processor

bus can be read and written by RMAP. Therefore all the cores
on the processor’s AMBA bus including the debug support unit
(DSU) can be reached. On ground the software debugger
(GRMON) can connect to the processor through the SpaceWire
interface without requiring an additional debug connector. Also
on ground the second boot memory in the NOR-flash is written
by uploading the boot image and a small program to the
processor’s working memory and then starting the small
program that copies the boot image from working memory to
the NOR-flash.

Figure 4 : SpaceWire packet containing an RMAP write command (as given
by ECSS-E-ST-50-52C [4])

VI. USING RMAP FOR UPDATE OF INSTRUMENT SOFTWARE

As the boot memory update procedure on ground only uses
the SpaceWire interface, which is also available via the space
craft’s OBC in flight, it seems logical to also use this procedure
to update the boot software during flight operation. The only
changes that would be necessary are, to create a separate
RMAP command for the processor initialization that GRMON
performs in the update process on ground and use RMAP’s
safety and error checking capabilities. However as RMAP
provides access to all registers including debug support unit
(DSU) this is not a problem. Thus a possible update procedure
via RMAP for e.g. the GR712RC could consist of:

1) Stopping the software execution of the processor, by
simply writing to the DSU register “break now”

2) Initializing processor register via DSU including program
counter and Ancillary State Registers (ASRs)

3) Initializing the interrupt controller, memory configuration
registers, and the GPIO controller

4) Disabling breakpoints and the debug mode by writing to
the DSU control register and disabling the DSU Debug Mode
Mask register

5) Uploading a program that writes boot memory content
(see step 6) from working memory into the NOR-flash
memory; alternatively this program could already be stored in
another memory area and just copied to the working memory
to minimize upload data volume, but still being replaceable by
a newer version if needed

6) Uploading the new boot image via RMAP to the working
memory. This could also be optimized by only uploading
addresses and chunks of data where a difference to the current
boot image occurs (patch)

7) Finally starting the copy to NOR-flash process by writing
to the DSU break and single step register, when copying the
data has finished the program can cause the processor to boot
from the new boot image or cause a processor reset via a
register in the supervisor FPGA.

As RMAP features a key byte and can be used with target
logical address and RMAP cores are able to check these two
bytes, they can be used as a security check to prevent any
accidental triggering of the steps mentioned above, like e.g.
stopping software execution.

VII. RMAP ACCESS PROBLEMS

Despite appearing pretty straight forward an RMAP based
software update procedure has some problems. Firstly in the
many cases such as the GR712 processor the hardware RMAP
support can be disabled by software, whereby a corrupted
software image could potentially block any further accesses
and disable software updates. Also software can set the
SpaceWire logical address in the SpaceWire core of the
GR712, which results in the SpaceWire core discarding any
data that does not start with this logical address. Both of these
problems could be somewhat alleviated by ensuring correct
core settings through the first boot loader and halting the
processor execution or including a wait before the second boot
loader is started for a sufficient amount of time. As this is only
a register access it will not increase the size of the first boot
loader by a lot.

VIII. CONCLUSION

In the case of Solar Orbiter the ground operation team and
particularly the OBC only offers CCSDS PUS services for
payload instruments. Reasoning this with safety checks
performed on the OBC and SSMM, which require a match
between a SpaceWire packet’s logical address and the
application ID (APID) inside the CCSDS data packet, see
Figure 1. However an RMAP write packet, which is depicted
in Figure 4, starts with instruction, key and, reply address bytes
and therefore cannot contain a CCSDS type header including
APID which could be used for this safety check. Furthermore
the Spacecraft would need to allow sending a packet with the
protocol ID of RMAP (0x01). As the reply address in RMAP
has 12 Bytes and logical addressing of a single byte is used it
would be feasible to use the remaining 11 bytes for such header
information. However this only applies to a reply, as in a

request the position of an APID is the first byte of the reply
address which is used for routing the reply packet.

Despite these difficulties an RMAP based update procedure
would have several advantages. Such an update procedure
would completely eliminate the need of any instrument
software in the update process and thereby be inherently more
reliable. Furthermore, if no software is required, this software
does not need to be stored, which frees valuable FPGA
resources or eliminates the need of an additional PROM, which
would simplify system architecture and processor bus load as
depicted in Figure 3. Additionally it would reduce development
effort and costs, because no boot loader would need to be
developed and qualified.
In conclusion RMAP would be an elegant, effective and more
reliable mean of updating the instrument software, but there is
a lack of harmonization between the two standard protocols of
SpaceWire RMAP and the CCSDS PUS services and missing
support by the OBC platform at least in the exemplary case of
Solar Orbiter.

REFERENCES

[1] GR712RC – User’s Manual, Aeroflex Gaisler AB,
http://www.gaisler.com, Issue 2.3, May 2014

[2] LEON4-N2X - Data Sheet and User's Manual, Aeroflex Gaisler
AB, http://www.gaisler.com, Issue 2.3, May 2014

[3] CCSDS 102.0-B-5 Packet Telemetry, Blue Book, Issue 5,
November 2000

[4] ECSS-E-70-41A “Ground systems and operations - Telemetry
and telecommand packet utilization”, European Cooperation for
Space Standardization http://www.ecss.nl/, January 2003

[5] ECSS-E-ST-50-52C “SpaceWire - Remote memory access
protocol”, European Cooperation for Space Standardization
http://www.ecss.nl/, February 2010

[6] ECSS-E-ST-50-51C “SpaceWire protocol identification”,
European Cooperation for Space Standardization
http://www.ecss.nl/, February 2010

[7] ECSS-E-ST-50-53C “SpaceWire - CCSDS packet transfer
protocol”, European Cooperation for Space Standardization
http://www.ecss.nl/, February 2010

