
How RMAP improves in-flight update of on-board 
software via SpaceWire 

SpaceWire Missions and Applications, Short Paper  
 

Holger Michel, Adrian Belger, Björn Fiethe, Tobias 
Lange, Harald Michalik 

Institute of Computer and Network Engineering 
Technische Universität Braunschweig 

Braunschweig, Germany 
michel@ida.ing.tu-bs.de 

 Martin Kolleck 
Max Planck Institute for Solar System Research 

Göttingen, Germany 
 

 
 

Abstract—Modern space probes such as Solar Orbiter employ 
a SpaceWire network to connect to on-board computer (OBC), 
solid state mass memory (SSMM), and scientific instruments. 
Management of SpaceWire links within scientific instruments is 
typically performed by a data processing module (DPM) 
featuring a space qualified processor that is executing on-board 
software. To adapt to changing mission requirements, account 
for failures and fix possible software bugs, the ability of 
uploading and patching instrument software is mandatory. 
However uploading and over-writing of the software’s boot 
image cannot securely be performed by the software itself. If 
over-writing the boot image fails, the remaining image might be 
corrupted. So the processor may not be able to reboot 
successfully and no further upload would be possible. Therefore 
reception of uploaded patches must be performed by an 
independent entity. Currently, this is accomplished by a 
dedicated boot loader in separate memory area, to be qualified 
according to ECSS criticality category B. This boot loader 
processes uploading of patches and copies them to the second 
boot area, where the actual software including the operating 
system is stored. Due to the opportunity of modern processors to 
handle SpaceWire RMAP accesses (e.g. SpW-RTC, UT699, 
GR712RC [1], or upcoming NGMP [2]), it would be possible to 
perform uploading and patching of the instrument software 
independent of software execution using RMAP. This would 
dramatically simplify the development, eliminate the need for a 
class-B qualified boot loader, and will inherently improve 
reliability, as reception of patches would entirely be performed 
by hardware. This paper presents a possible update and patch 
process for boot images using hardware based RMAP features. 
Furthermore implications of the standard ECSS services 
affecting such patching routines are discussed. 

Index Terms—SpaceWire, RMAP, in-flight update, boot 
loader, CCSDS PUS.  

I. INTRODUCTION 

In modern scientific instruments a data processing module 
(DPM) handles processing of science data, instrument control, 
and telecommand (TC), telemetry (TM) and housekeeping 
(HK) communication. To receive TC and send TM and HK to 

the on-board computer (OBC) and solid state mass memory 
(SSMM) modern space probes such as Solar Orbiter or 
BepiColombo are equipped with a SpaceWire network. The 
DPM typically features a processor running instrument 
software to process TC, generate TM and HK, and perform 
instrument control. The instrument software is stored in a boot 
memory contained in the DPM and is booted automatically on 
power up. Due to changing scientific mission requirements or 
handling of unexpected difficulties with the instrument, this 
software may need to be exchanged or updated. Furthermore, if 
in disregard of instrument changing scientific requirements, the 
instrument was equipped with software that cannot be fixed 
and updated it would be required to completely qualify the 
software to almost highest ECSS criticality category. This 
causes additional effort and limits possibilities like dynamic 
memory allocation. Dynamic memory allocation in turn is 
essential for fast external interfaces using direct memory access 
(DMA). 

II. TELECOMMAND (TC) AND HOUSEKEEPING (HK) 

STANDARDS AND STRUCTURE 

The standard for data structures in TC, TM, and HK packets in 
ESA spacecrafts is ECSS-E-70-41A [3], which is based on 
guidelines agreed on in the Consultative Committee for Space 
Data Systems (CCSDS) such as reference document [4]. The 
standard ECSS-E-70-41A [3] is a packet utilization standard 
(PUS), defining the packet structure and a set of standard 
services. For TC packets arriving at a scientific instrument, the 
defined structure is depicted in Figure 1. Also this PUS [4] 
defines a set of standard services. These services are functions 
of the commanded entity e.g. the instruments DPM consisting 
of a command, an action, and if applicable a reply. The 
standard services are listed in Table I. 

For a particular spacecraft the contractor building the 
spacecraft platform performs a tailoring of this standard and 
selects mandatory and optional services, the payload 
instruments must be able to perform. 



Table I : Table 1 standard service defined by ECSS-E-70-41A [2] 

Service Type Service Name 

1 Telecommand verification service 

2 Device command distribution service 

3 Housekeeping & diagnostic data reporting service 

4 Parameter statistics reporting service 

5 Event reporting service 

6 Memory management service 

7 Not used 

8 Function management service 

9 Time management service 

10 Not used 

11 On-board operations scheduling service 

12 On-board monitoring service 

13 Large data transfer service 

14 Packet forwarding control service 

15 On-board storage and retrieval service 

16 Not used 

17 Test service 

18 On-board operations procedure service 

19 Event-action service 

Within that standard set of services, the service that can be 
used to update the instrument software is service 6 subtype 2 
“Load Memory using Absolute Addresses service”. After an 
upload and storing of a new software version has finished, the 
DPM would simply have to be rebooted. There is no standard 
service for rebooting a payload instrument; one possibility is 
to use the service 8 subtype 1 “Perform function” or to use a 
set of private services, if they are allocated for the mission, to 
implement the reboot function. It is not sufficient if a boot 
loader supports only these two services, instead the boot 
loader must also implement a set of minimal standard PUS 
services, so that spacecraft requirements for nominal operation 
are fulfilled and the spacecraft allows further operation and 
does not power down the instrument, Table II lists an 
exemplary set of services. 

Table II : Exemplary collection of a set of services 

Minimal services that need to be supported  

Service 1: TC Verification Service 

TM 1 1 TC acceptance success report 

TM 1 2 TC acceptance failure report 

TM 1 7 TC execution success report 

TM 1 8 TC execution failure report 

Service 6: Memory Management Service 

TC 6 2 Load data into memory area using absolute address 

TC 6 5 Dump memory area using absolute address 

TM 6 6 Memory dump using absolute address Report 

TC 6 9 Check memory area using absolute address 

TM 6 10 Memory check using absolute address Report 

Services for which the boot loader may need to generate a reply  

that avoids tripping error detection by the OBC 

Service 3: Housekeeping and Diagnostic Data Reporting Service 

TM  3 25 Housekeeping Parameter Report 

Service 5: Event Reporting Service 

TM 5 1 Normal / Progress Report 

TM 5 2 Error / Anomaly Report - Low Severity –Warning 

TM 5 3 Error / Anomaly Report - Medium Severity - Ground Action 

TM 5 4 Error / Anomaly Report - High Severity - On-board Action 

Service 9: Time Management Service 

Service 17: Test Service 

TM 17 1 Connection Test Response 

TM 17 2 Connection Test Response Report 

Service 19: Event-Action Service 

TC 19 1 Add an Event to the Detection List 

TC 19 4 Enable Actions 

TC 19 5 Disable Actions 

III.  CCSDS / PUS SERVICES IN SPACEWIRE PACKETS 

In SpaceWire packets a protocol identifier defines the 
packet type [6]. RMAP is assigned to the protocol identifier 
value 0x01 and the CCSDS packet transfer protocol is assigned 
to the protocol identifier value 0x02. [7] defines how packets 
of the CCSDS packet transfer protocol are transmitted through 
a SpaceWire network by appending addressing, protocol 
identifier, a reserved and user application byte at the start of the 
packet and an EOP marker at the end of the packet, see Figure 
2. 

 
Figure 2 : SpaceWire packet transporting a CCSDS packet as defined by [6] 
ECSS-E-ST-50-53C 

IV.  BOOT MEMORY OPTIONS AND ARCHITECTURE 

In order to avoid the effort of qualifying the entire 
instrument software to highest ECSS criticality level and allow 
for updates during space flight, current DPMs (such as for the 

 
 
 
 

 
Figure 1 : CCSDS packet structure as refined by ECSS-E-70-41A [3] 

 



Polarimetric and Helioseismic Imager (PHI) instrument on 
Solar Orbiter) have a two stage boot process, as depicted in the 
system in Figure 3. The default boot memory address range 
(0x0000 0000-0x0FFF FFFC) of the employed LEON 
processor connects to a non-volatile memory containing a 
minimal boot loader plus an additional boot memory which is 
larger in storage and the content of which can be exchanged. In 
the case of Solar Orbiter PHI DPM a minimal PROM memory 
could be implemented within the Microsemi RTAX2000 
system FPGA and a redundant NOR-flash is used to store the 
second boot image, which includes an RTEMS operating 
system and the complete instrument software. The basic boot 
loader will need to initialize processor registers and the 
SpaceWire interface and implement a basic driver for the 
SpaceWire interface. As the SpaceWire interface in processors 
such as the GR712 RC [1] uses direct memory access a 
substantial amount of software complexity and therefore boot 
loader size is required. Subsequently the boot loader needs to 
perform basic TC and TM handling and check if an update of 
the boot software needs to be performed. As NOR-flash cannot 
be written directly like a simple SRAM device, a driver 
performing defined program sequences also needs to be 
integrated in the boot loader. 

 

 
Figure 3 : Instrument data processing module boot memory set-up 

V. REMOTE MEMORY ACCES PROTOCOL (RMAP) 

The SpaceWire Remote Memory Access Protocol (RMAP) 
is a protocol that works over SpaceWire. This Protocol allows 
reading and writing memory remotely in a SpaceWire node. 
RMAP is defined in ECSS-E-ST-50-52C [5]. A memory write 
transaction is depicted in Figure 4 and it consists of SpaceWire 
addressing, protocol identifier, instruction, key, reply address, 
initiator logical, transaction identifier, address, data length, data 
and CRC-byte. In many radiation hard processors, such as e.g. 
the Aeroflex Gasiler GR712RC [1] the Aeroflex UT700 etc. 
the RMAP protocol is supported directly in hardware. In these 
devices even the complete address space from the processor 

bus can be read and written by RMAP. Therefore all the cores 
on the processor’s AMBA bus including the debug support unit 
(DSU) can be reached. On ground the software debugger 
(GRMON) can connect to the processor through the SpaceWire 
interface without requiring an additional debug connector. Also 
on ground the second boot memory in the NOR-flash is written 
by uploading the boot image and a small program to the 
processor’s working memory and then starting the small 
program that copies the boot image from working memory to 
the NOR-flash. 

 
Figure 4 : SpaceWire packet containing an RMAP write command (as given 
by ECSS-E-ST-50-52C [4]) 

VI.  USING RMAP FOR UPDATE OF INSTRUMENT SOFTWARE 

As the boot memory update procedure on ground only uses 
the SpaceWire interface, which is also available via the space 
craft’s OBC in flight, it seems logical to also use this procedure 
to update the boot software during flight operation. The only 
changes that would be necessary are, to create a separate 
RMAP command for the processor initialization that GRMON 
performs in the update process on ground and use RMAP’s 
safety and error checking capabilities. However as RMAP 
provides access to all registers including debug support unit 
(DSU) this is not a problem. Thus a possible update procedure 
via RMAP for e.g. the GR712RC could consist of: 

1) Stopping the software execution of the processor, by 
simply writing to the DSU register “break now” 

2) Initializing processor register via DSU including program 
counter and Ancillary State Registers (ASRs) 

3) Initializing the interrupt controller, memory configuration 
registers, and the GPIO controller 

4) Disabling breakpoints and the debug mode by writing to 
the DSU control register and disabling the DSU Debug Mode 
Mask register 

5) Uploading a program that writes boot memory content 
(see step 6) from working memory into the NOR-flash 
memory; alternatively this program could already be stored in 
another memory area and just copied to the working memory 
to minimize upload data volume, but still being replaceable by 
a newer version if needed  

6) Uploading the new boot image via RMAP to the working 
memory. This could also be optimized by only uploading 
addresses and chunks of data where a difference to the current 
boot image occurs (patch) 



7) Finally starting the copy to NOR-flash process by writing 
to the DSU break and single step register, when copying the 
data has finished the program can cause the processor to boot 
from the new boot image or cause a processor reset via a 
register in the supervisor FPGA. 

As RMAP features a key byte and can be used with target 
logical address and RMAP cores are able to check these two 
bytes, they can be used as a security check to prevent any 
accidental triggering of the steps mentioned above, like e.g. 
stopping software execution. 

VII.  RMAP ACCESS PROBLEMS 

Despite appearing pretty straight forward an RMAP based 
software update procedure has some problems. Firstly in the 
many cases such as the GR712 processor the hardware RMAP 
support can be disabled by software, whereby a corrupted 
software image could potentially block any further accesses 
and disable software updates. Also software can set the 
SpaceWire logical address in the SpaceWire core of the 
GR712, which results in the SpaceWire core discarding any 
data that does not start with this logical address. Both of these 
problems could be somewhat alleviated by ensuring correct 
core settings through the first boot loader and halting the 
processor execution or including a wait before the second boot 
loader is started for a sufficient amount of time. As this is only 
a register access it will not increase the size of the first boot 
loader by a lot. 

VIII.  CONCLUSION 

In the case of Solar Orbiter the ground operation team and 
particularly the OBC only offers CCSDS PUS services for 
payload instruments. Reasoning this with safety checks 
performed on the OBC and SSMM, which require a match 
between a SpaceWire packet’s logical address and the 
application ID (APID) inside the CCSDS data packet, see 
Figure 1. However an RMAP write packet, which is depicted 
in Figure 4, starts with instruction, key and, reply address bytes 
and therefore cannot contain a CCSDS type header including 
APID which could be used for this safety check. Furthermore 
the Spacecraft would need to allow sending a packet with the 
protocol ID of RMAP (0x01). As the reply address in RMAP 
has 12 Bytes and logical addressing of a single byte is used it 
would be feasible to use the remaining 11 bytes for such header 
information. However this only applies to a reply, as in a 

request  the position of an APID is the first byte of the reply 
address which is used for routing the reply packet. 

Despite these difficulties an RMAP based update procedure 
would have several advantages. Such an update procedure 
would completely eliminate the need of any instrument 
software in the update process and thereby be inherently more 
reliable. Furthermore, if no software is required, this software 
does not need to be stored, which frees valuable FPGA 
resources or eliminates the need of an additional PROM, which 
would simplify system architecture and processor bus load as 
depicted in Figure 3. Additionally it would reduce development 
effort and costs, because no boot loader would need to be 
developed and qualified. 
In conclusion RMAP would be an elegant, effective and more 
reliable mean of updating the instrument software, but there is 
a lack of harmonization between the two standard protocols of 
SpaceWire RMAP and the CCSDS PUS services and missing 
support by the OBC platform at least in the exemplary case of 
Solar Orbiter. 
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