
Providing Flexible and Reliable on-Chip Network
Communication with Real-Time Constraints

Eberle A. Rambo, and Rolf Ernst
Institute of Computer and Network Engineering

TU Braunschweig, Germany
{rambo|ernst}@ida.ing.tu-bs.de

Abstract— The same technology downscaling that enables
Multiprocessor Systems-on-Chip (MPSoCs) has increased sus-
ceptibility to soft errors, giving rise to the so-called unreliable
hardware. In this paper, we discuss the design of a central
component of such architectures, the Network-on-Chip (NoC),
and how to provide reliable on chip communication for real-time
mixed-critical systems, applications with different requirements
must be served, regarding e.g. time and reliability. We also discuss
formal timing analyses for resilient MPSoCs architectures.

I. INTRODUCTION

Technology scaling increases the hardware susceptibility to
soft errors, giving rise to the so-called unreliable hardware.
Soft errors are caused by alpha particles from package decay
and energetic neutrons from electromagnetic radiation, which
are abstracted as bit flips. System design for current and future
technologies have to cope with soft errors [1] in order to
provide the required reliability levels on each abstraction layer.
This further complicates the task of providing response time
guarantees, mandatory in the domain of real-time systems.

Techniques to overcome hardware induced errors in soft-
ware execution can profit from the abundance of cores avail-
able in Multiprocessor Systems-on-Chip (MPSoCs) to in-
crease reliability. For instance, software-based fault-tolerance
approaches [2], [3] provide reliable execution on a higher
level of abstraction without incurring overhead in hardware.
Such fault-tolerance approaches assume the correct operation
of some key components, both in software and hardware,
denominated Reliable Computing Base (RCB) [4].

Figure 1 shows an example of an RCB in a software-
based fault-tolerance solution with two types of protection
service, replicated execution and checkpointing & rollback.
For these approaches to be applicable and, at the same time,
financially attractive, the RCB must be as small as possible
and must be provided with the lowest overhead. We focus on
the hardware part of the RCB, which consists of the inter-core
communication, realized by a Network-on-Chip (NoC). Fault-
tolerance solutions succeed as long as the communication with
the applications works and is reliable. Losing contact with the
application instances in a non-predictable manner would mean
a system failure. Therefore, the NoC must be highly available
and reliable in the presence of soft errors.

In this paper, we discuss the requirements for a resilient
Network-on-Chip (NoC) design for use in mixed-critical real-

RCB

RCB

A
p

pl
ic

at
io

n

A
p

pl
ic

at
io

n

A
p

pl
ic

at
io

n

A
p

pl
ic

at
io

n

A
p

pl
ic

at
io

n

A
p

pl
ic

at
io

n

A
p

pl
ic

at
io

n

Kernel

Checkpointing & Rollback Service
Replicated Execution 

Service

PE PE PE
IO/

Memory

Network-on-Chip

Hardware
Software

Fig. 1. Example of a Reliable Computing Base (RCB) of a software-based
fault-tolerance solution for multiprocessor systems.

time systems. In this domain, an essential aspect is guaran-
teeing that the system responds in time, as specified. These
guarantees are provided by formal timing analyses, which
calculate worst-case response time bounds for the tasks in
the system. Since the NoC is a central component and also
a heavily shared resource in the system, it plays an important
role when providing response time guarantees. Therefore, the
NoC must be predictable even under the occurrence of soft
errors. Moreover, it has to allow tight worst-case bounds,
which rules out many of the available solutions.

II. RELIABILITY VS. PREDICTABILITY

Many fault-tolerance approaches for increasing the relia-
bility of NoCs have been proposed. The survey in [5] gives
a good overview of the existing relevant work. Generally,
retransmission protocols, such as Automatic Repeat reQuest
(ARQ) [6], are used to correct corrupt data, which is detected
using Error-Detecting Codes (EDCs), such as Cyclic Redun-
dancy Check (CRC) [7]. The error detection and correction
can be performed on an end-to-end basis, where the traffic is
checked at the network interfaces, or on an hop-to-hop basis,
where the traffic is also checked at each router. Usually the lat-
ter has been preferred. Hybrid schemes between the two have
also been researched. Most of the approaches target packet-
switched networks. Although faster wormhole-switched NoCs,



5-7. Application

4. Transport

3. Network

2. Data-link

1. Physical

5-7. Application

4. Transport

3. Network

2. Data-link

1. Physical

Handle errors 
in control

Handle errors 
in data

Fig. 2. OSI network model. Errors affecting the control of the network
should be handled in the lower network layers. Errors affecting data should
be addressed in the upper layers.

where packets are subdivided in Flow Control Units (flits),
have also been considered, albeit in the context of general
purpose computing.

Despite having been extensively researched, the operation
of the router itself under errors has been overlooked. An
FMEA analysis of a NoC implementation was performed in
[8], [9]. The thorough analysis aims at preparing the NoC
for use in real-time safety-critical systems, a domain that
requires identifying all possible errors and their effects, which
corresponds, in this case, to soft errors and their effects on the
NoC routers and links.

The analysis identified several cases where soft errors (tran-
sient faults) result in static effects. A static effect caused by
soft error means that, for instance, random blocking scenarios
could occur in the NoC. The effect of blocking propagates
backwards in the network in the form of backpressure and the
NoC would only recover with a reset of the affected router(s)
or even with a reset of the whole network, both with non-
negligible impact on the system performance. Static effects
are commonly associated with permanent faults due to similar
impacts on the system. If not differentiated at design time, the
occurrence of a transient fault with static effects will trigger
the recovery mechanism for permanent faults (if implemented)
or require a system reset.

Recovery mechanisms for permanent faults consist either
of redundancy at design time (Modular Redundancy), mode
change or dynamic solutions. One example of dynamic solu-
tion is deflective routing, a type of dynamic routing where the
traffic is locally redirected to a neighbor router bypassing an
unavailable or faulty router. Although well suited for general
purpose systems, this class of techniques cannot be applied
to real-time systems due to local decision making (dynamic),
which drastically impairs the predictability and controllability
of the system. Modular redundancy of hardware components
(e.g. dual or triple – DMR or TMR) and mode change
(or reconfiguration) are expensive features only implemented
in systems requiring very high levels of reliability and an
extended life. Moreover, those mechanisms have long recovery
times, assuming that permanent faults are a rare occurrence.
Handling a number of transient faults with these approaches
leads to a very long response times in case of errors.

Transient faults should only cause transient effects. We
argue that this must be handled in the lower layers of the NoC
stack, illustrated in Figure 2. For the sake of reducing area
overhead, we discard the use of fault-masking at the routers.
In case of errors, corrupt packets are dropped e.g. because
the routing data is corrupt and cannot be trusted anymore.

This results in a highly available but lossy NoC under soft
errors, providing a service comparable to the Internet layer in
the TCP/IP protocol stack, where the layer does not guarantee
packet delivery but guarantees the routing data integrity [6].

Additionally, the lower layers must provide sufficient in-
dependence between communication streams required in a
mixed-critical context, which requires that errors do not prop-
agate through different criticalities. This must be provided in
the form of fault containment in the lower layers (up to the
network layer). As a result of the fault containment, packets
are dropped before they are able to affect the traffic from other
tasks/criticalities.

On the top layers, transport protocols can provide reliable
data transmission. It involves guaranteed packet delivery and
guaranteed data integrity services. For instance by using re-
transmission protocols based on ARQ and CRC as checksum.
However, this requires the NoC to be available (i.e. no static
effects), otherwise retransmission protocols are ineffective [9].
Moreover, the transport protocol can be easily selected and
configured by software in the network interface, according to
the tasks’ timing constraints and reliability requirements.

III. INTEGRATED TIMING ANALYSIS UNDER SOFT ERRORS

Another essential aspect in the real-time domain is guaran-
teeing that the system responds in time. This is provided by
formal timing analyses, which calculate worst-case response
time bounds for the tasks in the system [10]. A simplified
illustration is shown in Figure 3. The tasks, which imple-
ment functionalities of the system, are mapped to processing
resources, the Processing Elements (PEs) in a multi-core.
The tasks communicate with other tasks or access resources
through the NoC. The analysis must model all relevant aspects
of the system in order to provide bounds on the response time
of those tasks. The figure abstracts the existence of shared-
resources and off-chip communication.

Error-free

NoC Model PE Model

E2E Timing 
Guarantees

Checkpoint 
& Rollback

TMR
Multi-path 

Routing

ARQ /
Go-Back-N

Mapping

Tasks

Router 
Scheduling

Scheduling

NoC Comm. 
Time Analysis

Response 
Time Analysis

NoC Latency 
Guarantees

Error-free

Fig. 3. Formal Timing Analysis flow considering the impact of fault-tolerance
mechanisms on the NoC (left-hand side) and on the overall task execution
(right-hand side).



The Response Time Analysis provides worst-case response
times for the tasks in the system. It is referred to as end-to-end
(E2E) response times in Figure 3 because it must enclose and
bound all sources of interference, blocking and delays. This
includes the scheduling used in each PE, the mapping, the
latency to access resources (e.g. DRAM, flash memory) and
the latency to communicate with other tasks. In a multi-core,
calculating the latency of a communication or resource access
is complex, as every communication leaving PE goes through
the NoC, a shared resource. These latency bounds are provided
by a separate analysis for the on-chip communication.

The Communication Time Analysis of the NoC [10] pro-
vides latency bounds for traffic streams on the chip. These can
be e.g. cache line transfers, Direct Memory Access (DMA)
transfers, sensor value, or a command for an actuator. The
analysis must consider the transmission time and all interfer-
ence that a packet suffers in the network. This is influenced e.g.
by the topology of the network, the arbitration in the routers,
Quality-of-Service (QoS) mechanisms and traffic classes. Nat-
urally, it also depends on the pattern of the traffic injected by
each PE in the system into the NoC.

The integration of fault-tolerance mechanisms and protocols
impacts directly these analyses. In addition to the current
models, the analysis must account for overheads generated by
error detection and recovery, which come in various forms.
For instance, ARQ handshaking in the NoC as well as check-
pointing in the PEs have impact on the response time even
in the error-free case and must be integrated in the respective
models.

This causes the need for analyses, such as the ones presented
by [10]–[12], to be merged and accurately account for the re-
sulting impacts of errors on the whole system. The worst-case
latency and the End-to-End (E2E) response time in different
error scenarios, the k-error scenario, can be computed. The
analysis of a k-error scenario considers the worst-case impact
of k errors on the response time or latency. This tells the
system designer whether the system is still able to meet its
deadlines in the presence of k errors. The analysis considers
that these errors occur inside the busy-window [11]. A realistic
k can then be obtained by multiplying the busy-window length
(time) by the expected error rate (error · time−1).

IV. OUTLINE

We have discussed the design of a resilient and reliable
Network-on-Chip for real-time mixed-critical systems. The
devised solution discards the use of fault-masking in the
router for the sake of low hardware overhead. Instead, resilient
routers are proposed, where faults are allowed to become
errors, whose effects are carefully limited and contained. The
resulting network is resilient (i.e. highly available) and pre-
dictable under errors, but does not guarantee packet delivery.
This is provided by transport protocols on an end-to-end
basis. In a mixed-critical system, applications with different
requirements must be served, regarding e.g. maximum latency,
QoS, safety (freedom from interference). The approach allows

flexibility in protecting traffic selectively according to the
applications’ requirements.

ACKNOWLEDGEMENTS

This work was partially funded by the German Research
Foundation (DFG) as part of the priority program “Dependable
Embedded Systems” (SPP 1500 – spp1500.itec.kit.edu).

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” Micro, IEEE,
vol. 25, no. 6, pp. 10–16, Nov 2005.

[2] P. Axer, R. Ernst, B. Döbel, and H. Härtig, “Designing an analyzable
and resilient embedded operating system,” in Proc. on Software-Based
Methods for Robust Embedded Systems, Braunschweig, Germany, 2012.

[3] B. Doebel and H. Hartig, “Can we put concurrency back into redundant
multithreading?” in Embedded Software (EMSOFT), 2014 International
Conference on. IEEE, 2014, pp. 1–10.

[4] M. Engel and B. Döbel, “The reliable computing base-a paradigm for
software-based reliability.” in GI-Jahrestagung, 2012, pp. 480–493.

[5] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in networks on chip,” ACM Comput. Surv, vol. 44, 2012.

[6] A. Tanenbaum and D. Wetherall, Computer Networks. Pearson Prentice
Hall, 2011.

[7] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in Dependable Systems
and Networks, 2004 International Conference on. IEEE, 2004, pp.
145–154.

[8] E. A. Rambo, A. Tschiene, J. Diemer, L. Ahrendts, and R. Ernst, “Failure
Analysis of a Network-on-Chip for Real-Time Mixed-Critical Systems,”
in Proceedings of Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, 2014.

[9] ——, “FMEA-Based Analysis of a Network-on-Chip for Mixed-Critical
Systems,” in NOCS, 2014.

[10] E. A. Rambo and R. Ernst, “Worst-case communication time analysis of
networks-on-chip with shared virtual channels,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition,
ser. DATE ’15, 2015, pp. 537–542.

[11] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig,
“Response-time analysis of parallel fork-join workloads with real-time
constraints,” in Real-Time Systems (ECRTS), 2013 25th Euromicro
Conference on. IEEE, 2013, pp. 215–224.

[12] P. Axer, D. Thiele, and R. Ernst, “Formal timing analysis of automatic
repeat request for switched real-time networks,” in SIES, Pisa, Italy, June
2014.


