
This is an author produced version of :

Article:

An extensible autonomous reconfiguration framework for complex component-based
embedded systems

Johannes Schlatow, Mischa Moestl and Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig

{schlatow|moestl|ernst}@ida.ing.tu-bs.de

Abstract—We present a framework based on constraint sat-
isfaction that adds self-integration capabilities to component-
based embedded systems by identifying correct compositions of
the desired components and their dependencies. This not only
allows autonomous integration of additional functionality but
can also be extended to ensure that the new configuration does
not violate any extra-functional requirements, such as safety
or security, imposed by the application domain.

Keywords-component-based; constraint satisfaction; embed-
ded systems; incremental self-integration; software deployment

I. INTRODUCTION

Embedded systems gradually develop from special-
purpose towards multi-purpose systems which provide an in-
creasingly diverse functionality. As this functionality is typ-
ically developed by several parties and potentially imposes
heterogeneous requirements, the integration task becomes
increasingly challenging. In the context of component-based
systems, integration boils down to composing a subset of
available components correctly such that the system provides
the requested functionality and also satisfies extra-functional
requirements such as safety, availability or security aspects.

Instead of following the more traditional, lab-centric,
approach of a more manual integration in conjunction with
testing and verification methods for extra-functional require-
ments, we propose an automated solution that can be inte-
grated into the system itself. This is particularly aligned with
systems that are not maintained by a single owner but rather
allow several parties to add, remove or modify functionality.
For instance, we can observe an increasing interest in in-field
updates for maintenance and customisation of safety-critical
systems such as automotive vehicles and embedded systems
in general [1]. This is also an objective of the Controlling
Concurrent Change (CCC) project that supported this work.
Adding self-reconfiguration capabilities to such a system is
desirable as it significantly increases its flexibility but is
similarly challenging as the system’s safe operation must
be ensured without being tested or verified in the lab.

We base our work on systems composed of isolated com-
ponents interacting via well-defined, explicitly connected
interfaces. As embedded systems are subject to resource lim-
itations and typically cannot host all available components
at the same time, the integration task consists in selecting a
(minimal) subset that provides the desired functionality.

Component-based design methods typically accompany
the contract-based specification which formalises the guar-

antees and assumptions that a component requires from
its environment. These specifications can address multiple
aspects, so-called design views, for which a mathematical
foundation has been presented in [2]. Furthermore, a design
process was proposed and evaluated in industrial case studies
that show the real-world applicability of this approach [3].

Based on constraint satisfaction, we propose an extensible
software framework for self-integration which is geared
towards separation of concerns and therefore facilitates
covering a variety of aspects. Based on a formal component
model suitable for safety-critical systems, we illustrate how
this framework covers and resolves functional dependencies
on the component level. In conjunction, this paves the way
for in-field updates of complex component-based systems.

We first detail the problem and system model in Section II
and III. In Section IV, we then elaborate on the framework’s
architecture and how the concept of design views integrates
with the constraint satisfaction approach. We further for-
mulate the functional constraints on the component level
and exemplary show their constraint encoding in Section V
before we finally conclude our findings in Section VII.

II. PROBLEM STATEMENT

When integrating an application component that requires
certain service interfaces, the designer first has to find
the components that provide these services and likewise
integrate those components in order to specify a valid
system configuration. This can imply choosing between
alternative components that provide syntactically the same
service interfaces or deciding whether certain device drivers,
protocol stacks or resource multiplexers are required. The
solution space for this is typically narrowed down by the
availability of the corresponding components. In addition,
various functional and extra-functional concerns such as the
reliability of a virtual file system or the worst-case latency
along a communication path further guide these decisions.
We understand that those concerns are addressed within the
contract of a component that specifies what properties are
required and thus need to be guaranteed by the environment.

Our approach focuses on performing this integration
task autonomously and incrementally by respecting all the
functional and extra-functional requirements specified in
the component contracts (cf. Definition 1). In this context,
autonomously means that the integration task is performed
within the target system and is able to resolve conflicts

between different components and their requirements un-
supervised. Moreover, incrementally implies that the target
system is subject to change, i.e. components may be added,
removed or modified after the initial deployment of the
system.
Definition 1. The incremental integration problem consists
in finding a new system configuration for a given set of com-
ponents to be deployed and the current system configuration.
The found system configuration must be valid, i.e. it must
fulfil all the functional and extra-functional requirements
specified in the contracts of the deployed components.

III. SYSTEM MODEL

In the CCC project, we aim at providing a contract-
based, autonomous integration framework for component-
based systems with service-oriented interfaces that follow
the principle of least privilege. The formal component model
we use as a foundation for this is presented in this section
and focuses on the similarities shared between a plethora
of existing models [4] to be applicable to a wider range of
systems with differing run-time environments (RTEs).

A component-based system is specified by its set of
components, their interfaces and the bindings between the
interfaces. More precisely, a component may require and/or
provide a number of different interfaces that must be bound
to a compatible counterpart. This has already been described
by [5]. However, an RTE may also impose cardinality re-
strictions such as the number of bindings as well as optional
or conditional bindings. We thus include a notation for these
in our component model to demonstrate the compatibility of
cardinality and conditional restrictions with our solution.

Let C denote the set of components, R the set of
requirements and P the set of provided capabilities. We
further distinguish between mandatory and optional require-
ments, Rm and Ro, such that R = Rm ∪ Ro. Note that
requirements correspond to service requirements whereas
capabilities correspond to the offered services. Each capa-
bility/requirement is owned by exactly one component. The
compatibility between capabilities and requirements is sub-
ject to the implied service interfaces. We can therefore define
the pairwise relationship between components, requirements
and capabilities by binary relations:
Definition 2. The relation requires ⊆ C×Rm specifies what
requirement belongs to which component such that (c, r) ∈
requires reads as “component c owns requirement r”.
Definition 3. The relation provides ⊆ C × P denotes what
component provides which capabilities such that (c, p) ∈
provides reads as “component c provides capability p”.
Definition 4. The compatibility between the requirements
and capabilities is expressed by the relation satisfiedBy ⊆
R×P such that (r, p) ∈ satisfiedBy reads as “requirement
r is satisfied by capability p”.

Note that the relations requires and provides additionally
classify as injective because no requirement/capability can
be owned by multiple components. We further extend this
model by adding the relation invokes and the function ν:

A

B C
1

D

E

F

component capability

requirement

provides/requires
invokes
satisfiedBy

Figure 1. Example of our component model

Definition 5. The relation invokes ⊆ P × Ro models
requirements that only need to be satisfied if a certain capa-
bility of a component is in use such that (p, ro) ∈ invokes
reads as “capability p invokes requirement ro”.
Definition 6. The function ν : P → N+ specifies how many
requirements can bind to a particular capability, i.e. how
many clients are allowed to connect to the same service.

Note that all these relations are derived from or explicitly
stated in the contracts of the components. Based on this,
we specify a system configuration as the tuple (α, β) with
α ⊆ C and β ⊆ satisfiedBy .

Figure 1 illustrates our component model with an example
comprising six components A–F. Component A has two
requirements one of which can connect to the capability
of component B and C. The other requirement can be
connected to a capability of component D. Component B on
the other hand not only provides a capability but also has a
requirement that is satisfied by the capability of component
C. Note that the latter has a cardinality of 1 and B represents
a multiplexing component that effectively allows multiple
other components to connect to component C. On the other
hand, component D provides two capabilities and has two
requirements satisfied by the capabilities of component E
and F. D therefore represents a protocol-stack component
that abstracts the interfaces of E and F. Also note that one
of D’s capabilities also invokes one of its requirements, i.e.
it only needs to be satisfied as soon as any requirement is
connected to the capability.

IV. FRAMEWORK ARCHITECTURE

In [3], a design flow was introduced that separates the
different concerns during the lab-based integration task into
various design views. While the global problem is to find
a feasible system configuration, individual sub-problems are
modelled by the respective design view for assessment with
an appropriate model. We therefore first adapt the design
view concept to our constraint satisfaction approach and,
secondly, elaborate on the central Multi-Change Controller
(MCC), that controls the autonomous reconfiguration.

Design views: The purpose of a design view is the
evaluation of possible system configurations under a partic-
ular model as to whether certain view-specific requirements
are satisfied. As checking every possible configuration is
potentially a very expensive computation, we instead define
the corresponding solution space by the set of constraints to
which each solution adheres.

System
configurations

View AView B

∪
σ′
A

σ

σ′
B

σ

µAµB

σ′

Figure 2. View concept

Definition 7. A view X is a function VX : (σ, µX) → σ′
X

that, given a set of configuration constraints σ and a set of
model-specific constraints µX , outputs a refined set σ′

X that
adheres to µX .

For instance, we can define a view A that is concerned
about deploying the components across multiple processing
resources. This view has a model of the hardware platform
along with constraints µA regarding the compatibility of the
components with the various resources (e.g. instruction set,
clock frequency). Based on this additional information, this
view evaluates the solution space defined by σ and further
restricts it by translating the model-specific constraints µA

into additional configuration constraints resulting in σ′
A.

Similarly, there are other views that are concerned with
other system properties. As illustrated in Figure 2, the
configuration constraints of multiple views (here: σ′

A and
σ′
B) are combined (σ′ = σ′

A ∪ σ′
B) and fed back into the

global solution space of system configurations.
We distinguish four types of constraints: 1) Necessary

and sufficient constraints tightly restrict the solution space.
2) Only sufficient constraints overrestrict the solution space
(e.g. by conservative assumptions) thereby cutting of actu-
ally feasible system configurations. 3) Only necessary con-
straints underrestrict the solution space and potentially allow
unsound solutions (false positives). 4) Separation constraints
separate unsound solutions from the solution space.

Obviously, type 1 is the most desirable, however, it might
be more practical to come up with constraints of type 2 or 3,
depending on the formalism of the constraint solver. Type 3
is more desirable but additionally requires a validity check
of each found solution in order to detect false positives and
(incrementally) separate these by adding type 4 constraints.

Multi-Change Controller: The MCC implements the
contract-based autonomous system reconfiguration by re-
sembling the design-view concept mentioned above. For
this purpose, it comprises a central constraint solver and
coordinates arbitrary design views in an incremental algo-
rithm that is depicted in Figure 3. In the ENC step, all
views encode their problem for the constraint solver that
tries to obtain a solution in the SLV step. If a view uses
only necessary constraints, a so-called analysis engine then
checks (CHK step) whether an obtained solution can be
safely admitted (cf. [6], [7]) or, otherwise, adds (more)
separation constraints. The iterative addition of separation
constraints also facilitates the integration of so-called op-
timisation engines that search for better solutions in the
OPT step and return the optimum once the problem turns
infeasible. This further allows integrating existing tools and

request

ENC SLV CHK

OPT

accept

reject

encode feasible

infeasible valid

constrain

constrain

Figure 3. High-level control flow of the controller

established but potentially time-consuming analyses into
the framework. The constraint encoding depends on the
underlying formalism of the constraint solver and the design-
view’s model. In the next section, we show an example of
the view that adheres to our component model and how its
constraints can be encoded for a simple constraint solver.

V. COMPONENT VIEW

In component-based systems, the component view in-
herently builds the foundation for other views. W.r.t. the
reconfiguration of such a system, this view is concerned
with the composition of the system components such that
all functional dependencies are satisfied. These dependencies
are given by the formal component model (Section III) resp.
the contracts. Thus, given a query set of components κ ⊆ C,
the component view shall add constraints so that κ and all
their dependencies and connections are instantiated.

For this purpose, we first state the requirements that
every system configuration must fulfil: 1) A component
must be instantiated if explicitly queried. 2) All mandatory
requirements of an instantiated component must be con-
nected to a capability that satisfies the requirement. 3) Every
optional requirements of an instantiated component must
be connected to a capability that satisfies the requirement
if and only if its corresponding capability is used. 4) A
component must be instantiated if one of its capabilities
is used. 5) A component should not be present if neither
explicitly queried nor providing a required capability. 6) A
capability p can be used by at most ν(p) requirements. 7)
Already deployed components and their connections shall
not be modified during reconfiguration.

These requirements informally represent the constraints
on the incremental integration problem and need to be
converted into a formalism that can be fed into the particular
constraint solver. More precisely, we use a boolean satisfia-
bility problem (SAT) solver for which a variety of lightweight
implementations is available. In general, an SAT solver
expects the constraints, called clauses, to be disjunctions
(∨) of boolean variables or their negations (¬).

For the component view, we introduce these variables:
∀ci ∈ C : qi = True ⇔ ci was queried
∀ci ∈ C : ci = True ⇔ ci must be instantiated
∀rj ∈ R : rj = True ⇔ rj must be satisfied
∀pk ∈ P : pk = True ⇔ pk must be provided

∀(rj , pk) ∈ S : sjk = True ⇔ rj is connected to pk
In order to provide an insight into how these requirements

are encoded, we take a look at requirement 2. This asserts

that a component is instantiated if one of its capabilities is
used and is encoded into the following clauses:

∀(rj , pk) ∈ satisfiedB : ¬sjk ∨ pk
∀(ci, pk) ∈ provides : ¬pk ∨ ci

Note that there exist several methods to encode the cardi-
nality constraints into clauses by adding additional variables
[8]. We, however, use the more straightforward binomial
encoding that performs reasonably well in our case where
the cardinality is often either restricted to 1 or unrestricted.

VI. RELATED WORK

There exists related work that tries to tackle the growing
complexity of systems with heterogeneous requirements by
introducing model-based design processes. In particular [3]
introduced and evaluated a contract-based design process
for component-based systems in order to reason separately
about the (extra-)functional requirements of different views.
It includes functional views – Data, Component, Hardware
and Deployment – as well as extra-functional, partly domain-
specific, views – Real-time, Space-specific, Behavioural,
Dependability and Railway-specific.

On the other hand, [9] presented a layered framework for
the integration of heterogeneous systems engineering tools
with differing partial models (i.e. views) into an overall
model of the system required by the development process.
Both approaches, however, focus on a lab-based integration
process, which still requires manual decisions.

In the field of constraint-based deployment of compo-
nents, [10] presented a framework that deploys and man-
ages distributed applications by automatically resolving the
mappings and interconnections based on a domain-specific
constraint language. Furthermore, [5] formalised the depen-
dency resolution problem for the OSGi component model
and presented the corresponding SAT encoding. Yet both
approaches only cover single aspects and do not model
dependencies on the service level.

There also exists some work with regards to contract-
based approaches for self-adaptation of component-based
embedded systems. Particularly the FRESCOR project [11]
proposed to use service contracts in a layered middleware
architecture to manage the adaptation of soft real-time
components but does not regard aspects such as safety or
availability where hard guarantees are imperative.

VII. CONCLUSION AND FUTURE WORK

In the scope of this work, we developed a framework
for autonomous reconfiguration of complex component-
based systems that supports the integration of model-based
analyses and optimisation objectives. This framework is par-
ticularly tailored for the integration into embedded systems
in order to conduct admission control of in-field updates and
thereby provide adaptivity in critical application domains. It
further consolidates well-known concepts and formal meth-
ods such as separation of concerns, constraint satisfaction
and contract-based design with multiple viewpoints that,
in conjunction, facilitate tackling the increasing complexity

and even automate the integration task. In the scope of
this work, we focused on the component view that acts
as a foundation for other design views by restricting the
solution space to correct compositions of components. With
the corresponding SAT encoding of the component view, we
can already solve the deployment problem in an incremental
manner and thus even minimise the number of changes to
already instantiated components. Yet performing changes
incrementally can quickly lead to a local optimum in the
solution space that need to be considered for the long-term
evolution of such systems. A case study showed that the
practical complexity of such problems is much lower than
the theoretically derived bounds. Extra-functional concerns
such as end-to-end latencies, however, are subject to future
work and may potentially challenge the SAT approach by
increasing the problem complexity.

ACKNOWLEDGEMENTS

This work was supported by the DFG Research Unit
Controlling Concurrent Change (CCC), funding number
FOR 1800. We thank the members of CCC for their support.

REFERENCES

[1] I. Kuz and Y. Liu, “Extending the capabilities of component
models for embedded systems,” in Intl. Conf. on the Quality of
Software-Architectures (QoSA), Boston, MA, USA, Jul. 2007.

[2] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca,
R. Passerone, and C. Sofronis, “Multiple viewpoint contract-
based specification and design.” in FMCO, ser. Lecture Notes
in Computer Science, vol. 5382, 2007, pp. 200–225.

[3] M. Panunzio and T. Vardanega, “A component-based process
with separation of concerns for the development of embedded
real-time software systems,” Journal of Systems and Software,
vol. 96, pp. 105–121, Oct. 2014.

[4] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron,
“A classification framework for software component models,”
IEEE Trans. Softw. Eng., vol. 37, pp. 593–615, Sep. 2011.

[5] G. Jenson, J. Dietrich, and H. W. Guesgen, “An empirical
study of the component dependency resolution search space,”
in 13th Intl. Symp. on CBSE, Jan. 2010, pp. 182–199.

[6] M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and
R. Ernst, “Contract-based dynamic task management for
mixed-criticality systems,” in 6th IEEE Intl. Symp. on Indus-
trial Embedded Systems (SIES 11), Jun. 2011, pp. 18–27.

[7] S. Stein, M. Neukirchner, and R. Ernst, “Admission control
and self-configuration in the EPOC framework,” in Intl. Conf.
on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XI), Jul. 2011.

[8] A. M. Frisch and P. A. Giannaros, “SAT encodings of the
AT-most-k constraint: Some old, some new, some fast, some
slow,” 2010.

[9] M. Gleirscher, D. Ratiu, and B. Schatz, “Incremental integra-
tion of heterogeneous systems views,” in Intl. Conf. on Sys.
Eng. and Modeling, 2007. ICSEM 07, 2007, pp. 50–59.

[10] A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “A framework
for constraint-based deployment and autonomic management
of distributed applications,” in 1st International Conference
on Autonomic Computing (ICAC 2004), 2004, pp. 300–301.

[11] M. Sojka and Z. Hanzalek, “Modular architecture for real-
time contract-based framework,” in IEEE Intl. Symp. on
Industrial Embedded Systems (SIES 09), 2009, pp. 66–69.

	Paper title: An extensible autonomous reconfiguration framework for complex component-based embedded systems
	Article reference: J. Schlatow, M. Moestl and R. Ernst, "An Extensible Autonomous Reconfiguration Framework for Complex Component-Based Embedded Systems," 2015 IEEE International Conference on Autonomic Computing, Grenoble, 2015, pp. 239-242.
	DOI: DOI 10.1109/ICAC.2015.18
	Copyright notice: ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

