

An extensible autonomous reconfiguration framework for
complex component-based embedded systems (ICAC’15)

Johannes Schlatow, Mischa Möstl, Rolf Ernst

 {schlatow|moestl|ernst}@ida.ing.tu-bs.de

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 2

Motivation

Scenario:

 Single platform with multiple owners

 Extra-functional requirements (safety, security, timing, …)

e.g. automotive applications: ISO26262  freedom from interference

Goals:

 Incremental changes (updates, extensions, customisation)

 Long-term evolution

Lab-centric integration  autonomous in-field “update”

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 3

Problem Statement

Incremental integration

Given: current system configuration, set of components to be deployed

Wanted: new and valid system configuration

 A valid configuration must fulfil all requirements.

 (Extra-)functional requirements are specified by component contracts.

 Support additional optimisation objectives (e.g. minimum changes).

 Reuse established models and analyses where possible.

 Find valid system reconfigurations for incremental change requests.

 Integrate established formal analyses for (efficient) verification.

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 4

Related Work

Related Work

 [Dearle et al. 2004]: constraint-based deployment of distributed applications
(mapping and interconnect)

 [Jenson et al. 2010]: SAT encoding for component-level dependencies

 [Panunzio, Vardanega 2014], [Gleirscher et al. 2007]:
lab-based design processes covering multiple views

 [Sojka, Hanzalek 2009], [Stein et al. 2011]:
single-view contract-based self-adaptation/admission control

Our Contributions

1. Boolean satisfiability (SAT) approach for service-level functional
dependencies in component-based systems.

2. Extensible framework for formal (contract-based) admission control of
incremental changes w.r.t. multiple design views.

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 5

Component Model

Targeted run-time environments (e.g. Genode OS Framework):

 Component-based

 Service-oriented interfaces

 Explicit connections  principle of least privilege

 extracted from component contracts

𝐶 ∶ set of components
𝑅 ∶ set of requirements
𝑃 ∶ set of capabilities

Relations:
satisfiedBy ⊆ 𝑅 × 𝑃
provides ⊆ 𝐶 × 𝑃
etc…

(+ optional requirements & cardinality constraints)

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 6

Framework Architecture – Multi-Change Controller

Multi-Change Controller

 Implements contract-based admission control / contract negotiation
(multiple applications, multiple aspects)

 Separates (extra-)functional aspects ( design views)

 Central constraint solver

 Translates model-specific constraints (𝜇) into configuration constraints 𝜎

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 7

Framework Architecture – Multi-Change Controller (cont.)

Constraint classification:

1) Necessary and sufficient: optimal, possibly extensive or not even possible

2) Only sufficient: over restrictive  avoid

3) Only necessary: under restrictive  requires sanity check

4) Separation constraints: incrementally separate unsound solutions

Iterative approach:

ENC: constraint encoding 1)-3)

SLV: central constraint solver

CHK: view-specific analysis engines
  sanity check + constraints (4)

OPT: optional optimisation engines
  design-space exploration

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 8

Component View

 Solves (service-level) functional dependencies between components.

 Finds functionally valid component compositions.

 Provides a basis for most extra-functional views (e.g. timing).

Requirements

1) A component must be instantiated if explicitly queried.

2) A component must be instantiated if one of its capabilities is used.

3) …

Encoded as Boolean constraints (SAT), e.g. 2):
∀ 𝑗, 𝑘 ∈ 𝑆: ¬𝑠𝑗𝑘 ∨ 𝑝𝑘

∀ 𝑖, 𝑘 ∈ 𝑃: ¬𝑝𝑘 ∨ 𝑐𝑖

𝑃 ∶ set of capabilities
𝑆 ∶ set of connections
𝑐𝑖 = 𝑇𝑟𝑢𝑒 ⇔ component i must be instantiated
𝑝𝑘 = 𝑇𝑟𝑢𝑒 ⇔ capability k must be provided
𝑠𝑗𝑘 = 𝑇𝑟𝑢𝑒 ⇔ 𝑟𝑗 is connected to 𝑝𝑘

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 9

Conclusion and Future Work

Conclusion

 Autonomous reconfiguration of component-based systems

 Admission control of in-field updates

 Constraint satisfaction with multiple design views

 SAT approach for service-level functional dependencies

Future Work

 Add views for timing, mapping, functional correctness, safety

 Performance evaluation on realistic, more complex use-cases

Thank you for your attention! Questions?

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 10

References

[Dearle et al. 2004]: A. Dearle, G. N. C. Kirby, and A. J. McCarthy
“A framework for constraint-based deployment and autonomic management of distributed applications,” in
1st International Conference on Autonomic Computing (ICAC 2004), 2004.

 [Jenson et al. 2010]: G. Jenson, J. Dietrich, and H. W. Guesgen
“An empirical study of the component dependency resolution search space,” in 13th Intl. Symp. on CBSE,
Jan. 2010.

[Panunzio, Vardanega 2014]: M. Panunzio and T. Vardanega
“A component-based process with separation of concerns for the development of embedded real-time
software systems,” Journal of Systems and Software, vol. 96, Oct. 2014.

[Gleirscher et al. 2007]: M. Gleirscher, D. Ratiu, and B. Schatz

“Incremental integration of heterogeneous systems views” in Intl. Conf. on Sys. Eng. and Modeling, ICSEM
2007.

[Sojka, Hanzalek 2009]: M. Sojka and Z. Hanzalek
“Modular architecture for real-time contract-based framework,” in IEEE Intl. Symp. On Industrial Embedded
Systems (SIES 09), 2009.

[Stein et al. 2011]: S. Stein, M. Neukirchner, and R. Ernst
“Admission control and self-configuration in the EPOC framework,” in Intl. Conf. on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XI), Jul. 2011.

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 11

Backup Slides

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 12

Component View – Requirements

Requirements

1) A component must be instantiated if explicitly queried.

2) All requirements of an instantiated component must be connected to a
capability that satisfies the requirement.

3) All invoked requirements of an instantiated component must be connected
to a capability that satisfies the requirement if and only if the invoking
capability is connected.

4) A component must be instantiated if one of its capabilities is used.

5) A component should not be present if neither explicitly queried nor
providing a required capability.

6) A capability 𝑝 can be connected to at most 𝜈(𝑝) requirements.

7) Already deployed components and their connections shall not be modified
during reconfiguration.

 SAT (boolean satisfiability) encoding

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 13

Component View – SAT encoding

Variables

∀𝑖 ∈ 𝐶: 𝑞𝑖 = 𝑇𝑟𝑢𝑒 ⇔ 𝑐𝑖 was queried

∀𝑖 ∈ 𝐶: 𝑐𝑖 = 𝑇𝑟𝑢𝑒 ⇔ 𝑐𝑖 must be instantiated

∀𝑗 ∈ 𝑅: 𝑟𝑗 = 𝑇𝑟𝑢𝑒 ⇔ 𝑟𝑗 must be satisfied

∀𝑘 ∈ 𝑃: 𝑝𝑘 = 𝑇𝑟𝑢𝑒 ⇔ 𝑝𝑘 must be provided

∀(𝑗, 𝑘) ∈ 𝑆: 𝑠𝑗𝑘 = 𝑇𝑟𝑢𝑒 ⇔ 𝑟𝑗 is connected to 𝑝𝑘

Constraints (e.g.):
∀ 𝑗, 𝑘 ∈ 𝑆: ¬𝑠𝑗𝑘 ∨ 𝑝𝑘

∀ 𝑖, 𝑘 ∈ 𝑃: ¬𝑝𝑘 ∨ 𝑐𝑖

𝐶 ∶ set of components
𝑅 ∶ set of requirements
𝑃 ∶ set of capabilities
𝑆 ∶ set of connections

Requirement 2:
Component is instantiated if one of its capabilities is used.

