

An extensible autonomous reconfiguration framework for
complex component-based embedded systems (ICAC’15)

Johannes Schlatow, Mischa Möstl, Rolf Ernst

 {schlatow|moestl|ernst}@ida.ing.tu-bs.de

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 2

Motivation

Scenario:

 Single platform with multiple owners

 Extra-functional requirements (safety, security, timing, …)

e.g. automotive applications: ISO26262 freedom from interference

Goals:

 Incremental changes (updates, extensions, customisation)

 Long-term evolution

Lab-centric integration autonomous in-field “update”

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 3

Problem Statement

Incremental integration

Given: current system configuration, set of components to be deployed

Wanted: new and valid system configuration

 A valid configuration must fulfil all requirements.

 (Extra-)functional requirements are specified by component contracts.

 Support additional optimisation objectives (e.g. minimum changes).

 Reuse established models and analyses where possible.

 Find valid system reconfigurations for incremental change requests.

 Integrate established formal analyses for (efficient) verification.

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 4

Related Work

Related Work

 [Dearle et al. 2004]: constraint-based deployment of distributed applications
(mapping and interconnect)

 [Jenson et al. 2010]: SAT encoding for component-level dependencies

 [Panunzio, Vardanega 2014], [Gleirscher et al. 2007]:
lab-based design processes covering multiple views

 [Sojka, Hanzalek 2009], [Stein et al. 2011]:
single-view contract-based self-adaptation/admission control

Our Contributions

1. Boolean satisfiability (SAT) approach for service-level functional
dependencies in component-based systems.

2. Extensible framework for formal (contract-based) admission control of
incremental changes w.r.t. multiple design views.

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 5

Component Model

Targeted run-time environments (e.g. Genode OS Framework):

 Component-based

 Service-oriented interfaces

 Explicit connections principle of least privilege

 extracted from component contracts

𝐶 ∶ set of components
𝑅 ∶ set of requirements
𝑃 ∶ set of capabilities

Relations:
satisfiedBy ⊆ 𝑅 × 𝑃
provides ⊆ 𝐶 × 𝑃
etc…

(+ optional requirements & cardinality constraints)

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 6

Framework Architecture – Multi-Change Controller

Multi-Change Controller

 Implements contract-based admission control / contract negotiation
(multiple applications, multiple aspects)

 Separates (extra-)functional aspects (design views)

 Central constraint solver

 Translates model-specific constraints (𝜇) into configuration constraints 𝜎

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 7

Framework Architecture – Multi-Change Controller (cont.)

Constraint classification:

1) Necessary and sufficient: optimal, possibly extensive or not even possible

2) Only sufficient: over restrictive avoid

3) Only necessary: under restrictive requires sanity check

4) Separation constraints: incrementally separate unsound solutions

Iterative approach:

ENC: constraint encoding 1)-3)

SLV: central constraint solver

CHK: view-specific analysis engines
 sanity check + constraints (4)

OPT: optional optimisation engines
 design-space exploration

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 8

Component View

 Solves (service-level) functional dependencies between components.

 Finds functionally valid component compositions.

 Provides a basis for most extra-functional views (e.g. timing).

Requirements

1) A component must be instantiated if explicitly queried.

2) A component must be instantiated if one of its capabilities is used.

3) …

Encoded as Boolean constraints (SAT), e.g. 2):
∀ 𝑗, 𝑘 ∈ 𝑆: ¬𝑠𝑗𝑘 ∨ 𝑝𝑘

∀ 𝑖, 𝑘 ∈ 𝑃: ¬𝑝𝑘 ∨ 𝑐𝑖

𝑃 ∶ set of capabilities
𝑆 ∶ set of connections
𝑐𝑖 = 𝑇𝑟𝑢𝑒 ⇔ component i must be instantiated
𝑝𝑘 = 𝑇𝑟𝑢𝑒 ⇔ capability k must be provided
𝑠𝑗𝑘 = 𝑇𝑟𝑢𝑒 ⇔ 𝑟𝑗 is connected to 𝑝𝑘

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 9

Conclusion and Future Work

Conclusion

 Autonomous reconfiguration of component-based systems

 Admission control of in-field updates

 Constraint satisfaction with multiple design views

 SAT approach for service-level functional dependencies

Future Work

 Add views for timing, mapping, functional correctness, safety

 Performance evaluation on realistic, more complex use-cases

Thank you for your attention! Questions?

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 10

References

[Dearle et al. 2004]: A. Dearle, G. N. C. Kirby, and A. J. McCarthy
“A framework for constraint-based deployment and autonomic management of distributed applications,” in
1st International Conference on Autonomic Computing (ICAC 2004), 2004.

 [Jenson et al. 2010]: G. Jenson, J. Dietrich, and H. W. Guesgen
“An empirical study of the component dependency resolution search space,” in 13th Intl. Symp. on CBSE,
Jan. 2010.

[Panunzio, Vardanega 2014]: M. Panunzio and T. Vardanega
“A component-based process with separation of concerns for the development of embedded real-time
software systems,” Journal of Systems and Software, vol. 96, Oct. 2014.

[Gleirscher et al. 2007]: M. Gleirscher, D. Ratiu, and B. Schatz

“Incremental integration of heterogeneous systems views” in Intl. Conf. on Sys. Eng. and Modeling, ICSEM
2007.

[Sojka, Hanzalek 2009]: M. Sojka and Z. Hanzalek
“Modular architecture for real-time contract-based framework,” in IEEE Intl. Symp. On Industrial Embedded
Systems (SIES 09), 2009.

[Stein et al. 2011]: S. Stein, M. Neukirchner, and R. Ernst
“Admission control and self-configuration in the EPOC framework,” in Intl. Conf. on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XI), Jul. 2011.

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 11

Backup Slides

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 12

Component View – Requirements

Requirements

1) A component must be instantiated if explicitly queried.

2) All requirements of an instantiated component must be connected to a
capability that satisfies the requirement.

3) All invoked requirements of an instantiated component must be connected
to a capability that satisfies the requirement if and only if the invoking
capability is connected.

4) A component must be instantiated if one of its capabilities is used.

5) A component should not be present if neither explicitly queried nor
providing a required capability.

6) A capability 𝑝 can be connected to at most 𝜈(𝑝) requirements.

7) Already deployed components and their connections shall not be modified
during reconfiguration.

 SAT (boolean satisfiability) encoding

10. July 2015 | J. Schlatow, M. Möstl, R. Ernst | ICAC 2015 | Slide 13

Component View – SAT encoding

Variables

∀𝑖 ∈ 𝐶: 𝑞𝑖 = 𝑇𝑟𝑢𝑒 ⇔ 𝑐𝑖 was queried

∀𝑖 ∈ 𝐶: 𝑐𝑖 = 𝑇𝑟𝑢𝑒 ⇔ 𝑐𝑖 must be instantiated

∀𝑗 ∈ 𝑅: 𝑟𝑗 = 𝑇𝑟𝑢𝑒 ⇔ 𝑟𝑗 must be satisfied

∀𝑘 ∈ 𝑃: 𝑝𝑘 = 𝑇𝑟𝑢𝑒 ⇔ 𝑝𝑘 must be provided

∀(𝑗, 𝑘) ∈ 𝑆: 𝑠𝑗𝑘 = 𝑇𝑟𝑢𝑒 ⇔ 𝑟𝑗 is connected to 𝑝𝑘

Constraints (e.g.):
∀ 𝑗, 𝑘 ∈ 𝑆: ¬𝑠𝑗𝑘 ∨ 𝑝𝑘

∀ 𝑖, 𝑘 ∈ 𝑃: ¬𝑝𝑘 ∨ 𝑐𝑖

𝐶 ∶ set of components
𝑅 ∶ set of requirements
𝑃 ∶ set of capabilities
𝑆 ∶ set of connections

Requirement 2:
Component is instantiated if one of its capabilities is used.

