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Abstract—With the decreasing feature size of new chip gen-
erations, additional protection mechanism are necessary espe-
cially to protect safety-critical systems in environments with
higher radiation levels. This paper investigates a cross-layer
approach combining hardware and software-level techniques into
a complementary protection mechanism. This reduces overhead
by avoiding overlapping protection without reducing the fault
tolerance. The paper starts by introducing one software and one
hardware protection mechanism. Then, we discuss the overlap
as well as pros and cons of both techniques. Finally, we give
an outlook about possible benefits to combine both independent
approaches to one cross-layer resilience mechanism.

I. INTRODUCTION

Technology scaling influences the system design and reli-
ability [1]. Because increasing the single thread performance
reached its limits, hardware vendors increase the parallelism
by scaling up the core count in order to keep increasing
performance. This has been enabled by decreasing the feature
size, providing several benefits like reduced power consump-
tion and increased transistor density on the one hand. On the
other hand, it increases the susceptibility to soft-errors [2],
which extends to the whole chip, including the interconnection
between the cores, giving rise to the so-called unreliable
hardware.

The unreliability can be addressed in software as well as
in hardware. In hardware, the effects of such soft-errors are
abstracted as bit-flips in registers and memory. In software,
it can be abstracted as data corruption or misbehaving execu-
tion. Software-based approaches, like replication, checkpoint
restart, or encoded processing, can overcome soft-errors or
bring the system into a fail-safe state.

A remaining weak point is the inter-core communication.
The software layer can add redundancy to detect data cor-
ruption, but it is unaware of undelivered messages. Moreover,
parts of the message are not visible to software and must be
handled at the hardware level. Detecting an error at software
level also leads to additional overhead, compared e.g. to error
detection and retransmission at the hardware level.

A particle strike can cause single or multiple bit-flips [3].
With decreasing feature size the probability for multi bit-
flips, caused by one particle strike, increases. Because ECC
can recover only from single bit flips, the messages can
be additionally protected in software, which guarantees the
message integrity but not its delivery.

In this paper, we investigate how soft-errors, in the form of
Single Event Upsets as well as Multi Event Upsets, can impair
the whole communication path of a multi-core platform and,
more importantly, how to protect it. A cross-layer resilience
approach to the problem is discussed, where the protection in
software and hardware can maximize the fault-tolerance while
avoiding unnecessary accumulated overhead.

II. RELATED WORK

Fault tolerance can be achieved at different abstraction
layers. The physical layer ensures the correct transmission
between two transmission points, whereas the network or
transport layer includes further techniques to ensure that a
message is finally delivered to the end point. Because of the
wide-spread use of TCP/IP, several fault tolerance approaches
exist to extend its reliability. The existing mechanisms focus
on different layers. Song et al. [4] developed a fault-tolerant
Ethernet protocol using COTS hardware, which is application
level transparent. Their approach extends the network stack
and adds the fault tolerance functionality between network
data link layer and the transport and network protocol layers.
Other techniques, like PortLand [5], extend the data link layer.
Because higher level protocols like TCP/IP also include fault-
tolerance mechanisms, the fault-tolerance overhead is probably
higher than necessary.

An overall system approach is made by the Tandem Non
Stop technology [6]. It is based on special purpose hardware
and the system software was developed with fault-tolerance in
mind. Because of the high development effort, the successors
of the original Non Stop system goes into the direction of
COTS hardware.

Combining hardware and software mechanisms can reduce
the fault-tolerance overhead or can improve the overall system
performance. Kariniemi and Nurmi [7] designed a NoC where
the hardware and software protocols are tightly coupled to
increase communication performance. They also considered
fault-tolerance in their work.

In the following, we will focus on fault-tolerance to increase
the robustness, by decreasing the necessary costs.

III. SYSTEM OVERVIEW & FAULT MODEL

Figure 1 illustrates the system we will harden and which
is used for evaluation. On the lowest layer, there are several
CPUs which are interconnected. We assume that we have



some CPUs which are more reliable and executing critical
software parts, according to the design presented by Engel and
Döbel [8]. If we cannot use hardened CPUs, then additional
techniques like AN-Encoding [9] are necessary to detect a
malfunctioning CPU.

Fig. 1: Many-core system overview.

At software level, we use a microkernel based system. The
highlighted part of Figure 1, the RCB, is the critical part which
has to be executed on one of the reliable cores. The other
software components are protected by existing techniques like
Checkpointing/Restart [10] or replication [11].

In this work, we are focusing on transient faults, caused by
events such as particle strikes or electromagnetic radiation.
Due to its transient nature, after re-executing or rewriting
the fault disappears. Moreover, an existing fault, visible at
hardware level, may not influence the software at all because
it is masked by the hardware or the faulty function unit or
memory area is not used at all.

In the sequence, we analyze the failures caused by transient
faults at the system level. Next, we discuss the impacts of
faults on the different IPC communication steps. In Section VI,
we discuss handling the faults in software. In Section VII we
extend the analysis to the hardware level and discuss handling
faults in hardware.

IV. SYSTEM ANALYSIS

To examine the failure-vulnerability of our system we
performed a full fault analysis for core system functions of the
used microkernel. Figure 2 illustrates the results. We grouped
the results in four classes: Fault free (OK), system crashes and
stops working (CRASH), the system continues work, but the
outcome differs, which is called silent data corruption (SDC),
and the system does not reach a specific execution point within
a specified time frame (TIMEOUT).

System crashes and timeouts can have various reasons. A
bit-flip my affect the system state and changes the execution
so that an exception is triggered or the execution hangs in an
endless loop. Those failures need different memory protection
mechanism, which are out of the scope of this paper.

A crash could be the result of a wrongly delivered message
and a timeout the result of a non-delivered message. Both
cases will be discussed in Section VII.
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Further, a crash may also be the result of corrupted message,
which leads to a wrong system execution. A detailed analysis
of the SDC outcome of the performed test cases indicates that
all non-detected failures leading to a wrong system output are
the result of corrupted messages.

The next section describes how a message is delivered and
explains the different fault cases.

V. IPC COMMUNICATION AND FAULT CASES

The inter-process communication in a multi-core system is
illustrated in Figure 3. In 1 , a client creates a message
and hands over the message to the OS (hypervisor). During
these steps, the message is stored in memory 2 . In 3 ,
the message is then transferred through the interconnect (the
Network-on-Chip) to the receiver, where it is stored in a
buffer 4 . The OS then hands the message over to the
other application 5 . Depending on the implementation, the
message may be transferred to main memory before being read
by the receiver, in which case, the message would go through
the NoC and memory once more.

Soft-errors can occur in any of the steps of an inter-process
communication and therefore result in different failures. The
communication can be protected in hardware (NoC), which
guarantees the delivery and integrity of messages. A problem
arises when an error corrupts the message before being handed
over to the NoC 2 , or similarly, after being delivered but
before being consumed 4 . Even though it is a common



practice to protect the memory with ECC, it is not sufficient
[12], especially for future systems with decreased feature size.

VI. SOFTWARE MECHANISM

At software level only some parts of the faults are visible,
because some errors are masked by the hardware. Faults
manifesting into an error can lead to different results: Malfunc-
tioning software or data corruption. The execution path may
be changed because the input values differ, which can also
result in a system crash. Other bit-flips in the network packet
may influence the outcome of a calculation, which cannot be
detected.

For off-chip communication, checksums are state-of-the-
art to protect message header and payload. But message
transmission within the same die or even across package
boundaries of the same system is not appropriately protected
[13] or assumed to be fault-free. We expect that the reliability
decreases with future systems and makes a message protection
within the same die necessary. Therefore, we evaluated a
software based approach.

A. Systems Software & Messages

To harden the communication, we looked at a microkernel-
based operating system. This is in line with the presented
system design in Section I, because the microkernel is part
of a small reliable computing base and most software parts
can run on top of it, including system software services. In
Section V we gave a general overview of the inter process
communication. In this section, we focus on the software’s
point of view.

The simplest form is data exchange. One process creates a
message and initiates the transfer. Then, the kernel transfers
the data and informs the receiver about the incoming message.
For data transfer, a message is composed of two parts, the
header (including the receiver, information about the message
type, size, etc.) and the payload with the data.

But IPC is not only used to transfer data between sender
and receiver. For instance, it is also used to grant access rights.
A process A can grant process B access rights to some part of
its memory by sending a specific message MS . The message
MS includes information about the memory area and the
rights. Process B has to be ready to receive this information.
Therefore, it creates a special message MR, telling the kernel
that it is ready to receive the memory mapping and specifies,
at which point its able to receive the mapping.

In addition to communication, IPC messages can be used
for OS specific operations, which goes further than simple
data transmission. Figure 4a illustrates a simplified version of
an IPC message. The extended header is not transferred from
the sender to the receiver. Instead, the kernel interprets the
information and creates memory mappings or grants stigates a
cross-layer +approach combining hardware and software-level
techniques into a complementary +protection mechanism. This
reduces overhead by avoiding overlapping protection +without
reducing the fault tolerance. The paper starts by introducing
one +software and one hardware protection mechanism. Then,

(a) unprotected (b) protected

Fig. 4: Comparison of an unprotected and a protected IPC
message.

we discuss the overlap as +well as pros and cons of both
techniques. Finally, we give an outlook about

access rights.
First of all, we will focus on data transfer only and present

our general approach and first measurements. We give an
outlook on the advanced part at the end of this section.

B. Message Protection

A closer look at the results shown in Figure 2 indicates
that all SDC corruption is caused by a corrupted message.
Using one checksum for the whole IPC package is not feasible,
because an IPC packages is modified during transmission,
which requires several checks and recalculation during pack-
age delivery. Therefore, we added one dedicated checksum for
the payload.

To reduce the amount of additional read operations, the
checksum is calculated during message creation and finally
appended to the message after the last part of the payload
is written. We choose two different checksum algorithms:
CRC32 and parity byte. In general, CRC32 can deal with more
fault cases than a simple parity byte, but the CRC32 checksum
is more expensive to calculate.

C. Evaluation

Figure 5 presents the runtime overhead for different im-
plementations. For the measurement, we sent one message
with the maximum payload from one thread to another, which
gives us an upper bound for the overhead. Our first software
implementations of the CRC32 slows down the transmission
by a factor of 8 compared to the small overhead of less than
17% percent of a simple parity bit. Therefore, we analyzed
two alternatives: A fast software implementation using a table
with pre-calculated values. Besides the memory overhead, this
solution has the drawback, that the pre-calculated table is again
vulnerable to bit-flips. The second alternative uses hardware
extensions.

We repeated the experiment with the highest SDC from
Figure 2 for the different implementations. For the repeated ex-
periment we see no SDC at all, because the IPC252 experiment
sends only data which is now fully protected. The drawback
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Fig. 5: Runtime overhead for different IPC protection mecha-
nisms.

of our experiments is an increased amount of timeouts and
crashes.

D. Outlook

To address timeouts and crashes caused by corrupted mes-
sages, we currently harden the remaining part of an IPC
message. Because the different parts of an IPC message are
read or modified at different points, we group the data which
is used together. One possible solution is illustrated in 4b,
but we will investigate if a more fine grained approach can
minimize the protection overhead. If the hardware provides
instructions to calculate the CRC32, we will use the hardware-
based approach, because it provides the best ratio between
overhead and error-detection. For older or cheaper processors
without support for CRC32 calculation, we will use a simple
parity byte.

The presented software approach addresses failures, which
are visible as memory corruption at software level. But it re-
quires that all messages are finally transmitted and the receiver
gets notice about the incoming message. If packets, including
interrupts, can be lost, further techniques are necessary. In
software, we can implement a more complex communication
protocol with timeouts and retransmissions. However, we can
also design a reliable on-Chip network, to reduce the fault-
tolerance overhead caused by additional software. We will
discuss such an approach in the next section, followed by a
discussion about combining software and hardware techniques.

VII. HARDWARE MECHANISM

The error detection of a software-based approach is limited
to delivered packets, including notifying the receiver. If a
message is lost while being forwarded by the hardware or
delivered to the wrong core, an application may stall forever.
Using timeouts in software, also known as watchdogs, solves
the problem in some cases while incurring additional delays in
the worst-case. In other cases, it does not help. For instance,
when forwarding interrupts, which are a special type of
message and are related to signals/exception at the software

Payload
(e.g. memory address,
         operation, data)

Header
(e.g. routing data)

(a) unprotected

Payload

Checksum

Header
Checksum
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Fig. 6: Comparison of unprotected and protected NoC packets.

layer. This type of communication is not explicit in software
and thus must be handled in hardware.

The NoC protection against transient faults must consider
two aspects: the control and the data. The control concerns the
network availability, i.e. its capability to restore service after
an error affects a router’s state machine. The data concerns
packet delivery and packet payload integrity. Here, we focus
on the latter. We focus on errors affecting data. Therefore, we
assume that errors affecting the availability of the network are
either handled by an orthogonal approach, such as resilient
state machines at design time or error detection and recovery
at the component level. We assume that errors affecting control
may lead to packet loss, e.g. due to a component reset
or irrecoverable routing data. On an end-to-end perspective,
transient faults may cause packet loss (i.e. affecting packet
delivery) or cause packet corruption (i.e. affecting the payload
integrity). These are addressed next.

A. Packet integrity

The impacts of packet corruption depend on whether the
packet header or its payload is affected. The unprotected
packet is illustrated in Figure 6a.

The packet header contains the routing data, responsible
for delivering the packet to the right destination. The payload
contains everything else that is not related to routing, e.g.
memory address for a memory transaction, access rights, and
the data being transferred. The entire IPC message (Figure 4)
is here part of the payload of a packet in the NoC. The rest
of the payload contains memory address and operation type.
Depending on the IPC size, it may be divided and transported
as the payload of several packets. The handling of IPCs in
hardware and software will be detailed in Section VIII.

We protect the header of the packet and its payload sep-
arately. This is shown in Figure 6b. The header’s integrity
is checked in each router before processing the packet in that
router. The payload’s integrity is checked in the receiver’s net-
work interface. This allows the header to be quickly checked
and updated in the routers without requiring the whole packet
to be received and processed, as seen in faster wormhole-
switched networks [14]. In these networks, the packets are
composed of Flow Control Units (flits) and each flit has a
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header which is encoded such that each flit has a checksum
and is checked separately; the payload is distributed among
the flits has only one checksum that covers the entire payload
(not shown in the Figure).

B. Packet delivery

To provide reliable transmission of data in the NoC without
incurring high area overhead in hardware, we implement end-
to-end transport protocols. These protocols may be selected
and configured by software through registers in the network
interface. In this work, we consider ARQ retransmission
protocols, such as Stop-and-Wait and Go-Back-N [14]. Other
transport protocols, such as Multipath Routing (MPR) [15] and
other optimized ARQ protocols, can also be used. Disabling
the reliable packet delivery is also possible, for instance in the
case of sensor readings, whose readings may be occasionally
lost (packet integrity however must be ensured).

ARQ-based protocols are widely used to guarantee packet
delivery [14]. Its simplest variant is Stop-and-Wait, illustrated
in Figure 7. For each packet sent 1 , the sender node waits
for an acknowledgement from the receiver node before sending
the next packet 2 or retransmitting after a timeout 4 , in
case of error 3 . The throughput is improved in Go-Back-N,
which allows n packets to be sent (the send window) before
stopping and waiting for an acknowledgement [14].

C. Evaluation

We evaluated the mechanism with fault injection experi-
ments. The NoC was modeled and simulated in OMNeT++.
The traffic was generated by applications from the benchmark
MiBench [16] instantiated in a 3x3 2D-mesh NoC [17]: susan
and qsort in Double Modular Redundancy (DMR), blowfish,
bitcount. Errors were injected randomly in the entire NoC with
a varying Bit Error Rate (BER).

First, we evaluate the impact of errors on the NoC without a
hardware mechanism to guarantee the packet delivery. Figure 8
shows the packet delivery (considering integer packets) as the
BER increases. Because of corruption and errors in routers,
more packets are dropped as the BER increases. The BERs
utilized in the experiments are artificially high to explore
the performance of the approach under stress and lower the
simulation time. In practice, soft errors do not occur so often
(BER< 10−9).

Now, we evaluate the performance of the transport protocol
to guarantee packet delivery. Stop-and-Wait ARQ was em-
ployed as the transport protocol. Figure 9 shows the variation
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Fig. 8: Impact of errors on MiBench traffic as BER increases.
Variation of packet delivery w.r.t. the error free scenario.
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Fig. 9: MiBench traffic latency as BER increases on an Stop-
and-Wait ARQ transport protocol. Variation of latency w.r.t.
the error free scenario.

in latency when increasing the BER, relative to the error free
scenario. For each BER, the plot shows the mean value over
the variations of latency from all application instances w.r.t.
the error free scenario. ARQ is able to deliver all packets
as the error rate increases (guaranteed delivery). Since it
employs retransmission to do so (which includes timeouts),
the impact of increasing error rates is seen in the maximum
latencies. Despite that, the average latency almost does not
increase, since errors are not the general case but exceptions.
Interestingly, the minimum latencies decrease. This is due to
the fact that packets are dropped because an error (cf. Figure 8)
causing a temporary decrease of traffic interference for some
packets.

D. Outlook

The presented hardware approach is able to handle soft
errors occurring in the NoC and affecting any communication.
The protection, although transparent to the software execution,
is configurable by software, which can select the transport
protocol employed. It covers all explicit communication, such
as IPCs and shared memory accesses, and also implicit com-
munication, which are usually transparent to software, such as
cache line misses, memory coherence protocol messages, and
interrupt forwarding.
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VIII. HARDWARE VS. SOFTWARE

After reading Sections VI and VII, one may notice that the
data protecting is overlapping. Both hardware and software
protect the transmitted data with checksums. This is illustrated
in Figure 10. The IPC message is protected by software and
also protected by an additional checksum in hardware. Now
a question can be raised: should the protection for IPCs be
removed from hardware or from software?

Can we remove the software protection? After delivery, the
message remains in the local memory and is still prone to
errors until the data is consumed.

Can the hardware protection be removed? Some parts of the
IPC message is not visible to software, e.g. memory address
and other control information, and has to be protected in
hardware. This cannot be neglected as it can lead to memory
corruption inside the RCB, a case of error propagation. Other
parts can be protected in software, e.g. the IPC data itself.
Moreover, IPC messages are only part of the NoC traffic.
Non-IPC traffic (e.g. interrupt delivery) has to be protected
in hardware.

Finally, it is not a question of either-or. It is about how
both techniques can cooperate in synergy for the sake of per-
formance and efficiency. We will investigate the possibility of
disabling the hardware protection when transmitting messages
already protected by software.

A possible solution is to disable the hardware checksum for
data when transmitting IPC messages. The integrity check is
then only performed in software avoiding double overhead.
The solution is illustrated in Figure 11, where the data part of
the payload is not covered by the checksum in hardware. The
special packet format is configured in the network interface
of the sender and applies only to IPC messages (differentiated
through the memory address).

Let us reason about the benefits. Considering that a packet in
the NoC is able to transport 32 Bytes of data and assuming that
it would be protected by a checksum 10 bits long (e.g. CRC-
10 [18]), the approach would avoid CRC generation and check
for these packets and reduce the amount of transmitted data in
4%. Increasing the packet length to transport 64 Bytes of data
and increasing the checksum to 12 bits (e.g. CRC-12 [18]),

NoC Payload
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NoC Header
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IPC Payload

Checksum

IPC Header
Checksum

IPC ext. Header
Checksum

NoC Payload
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Fig. 11: Optimized protection of a NoC packet for IPC traffic.
Checksum is calculated in software.
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Fig. 12: Optimized protection of a NoC packet for IPC traffic.
Checksum is calculated in hardware and checked in software.

the reduction of the amount of transmitted data decreases to
2%. Since data corruption will not be detected in the NoC,
the retransmission or re-execution of the IPC in case of errors
is handled in software.

Another possible approach is to delegate the task of cal-
culating the IPC checksums to hardware. The sender node
creates the IPC message in a local memory. After creation,
the message is immediately sent through the NoC. The NoC is
then responsible for creating the checksum for the whole IPC
message, which takes place together with the transmission. At
the destination, the checksum used in the NoC is written to
the memory at a specified position in the end of the IPC. The
solution is illustrated in Figure 12. The NoC checksum for
the IPC is also delivered to the IPC message receiver, which
uses it to check the message integrity before consuming it.
The check is performed in software.

With this approach, the software overhead can be reduced
from 17% to the overhead caused by the hardware implemen-
tation, which is one order of magnitude lower. But this benefit
comes with the drawback of more complex hardware design,
including the hardware implementation of e.g. CRC-32 in each
network interface, which increases the chip size and therefore
production costs as well as energy consumption.



IX. CONCLUSION

We have investigated the communication path in an em-
bedded system and how it can be protected to be resilient to
soft errors. A software approach can protect data until usage
without special hardware. However, it has the drawback of
higher overhead in time when compared to a hardware one.
Hardware-based protection on the other side increases the
production costs because special hardware is needed. A cross-
layer approach combining hardware and software techniques
can increase the fault-tolerance without prohibitive overheads
in time and area. We have discussed initial ideas towards
an efficient cross-layer solution, opening the path for future
research.
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